精英家教网 > 高中数学 > 题目详情
7.直线3x-4y-9=0被圆(x-3)2+y2=9截得的弦长为(  )
A.3B.4C.5D.6

分析 先根据圆的方程求得圆的圆心坐标和半径,(3,0)在直线上,则弦长可求.

解答 解:根据圆的方程可得圆心为(3,0),半径为3
(3,0)在直线上,
∴弦长为2×3=6,
故选D.

点评 本题主要考查了直线与圆相交的性质.解题的关键是利用数形结合的思想,通过半径和弦构成的三角形和圆心到弦的垂线段,利用勾股定理求得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若$\frac{1}{1+a}>1-a$,则实数a的取值范围是(  )
A.a>0B.a>1C.a>-1且a≠0D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.满足条件AB=2,AC=$\sqrt{3}$BC的三角形ABC面积的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知$tanβ=\frac{1}{2}$,求sin2β-3sinβcosβ+4cos2β的值.
(2)求函数定义域:$y=\sqrt{-2{{cos}^2}x+3cosx-1}+lg(36-{x^2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x>0,则$\sqrt{\frac{1}{{x}^{2}+4}}$+$\sqrt{\frac{x}{x+2}}$的取值范围是(0,$\frac{3\sqrt{2}}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列值为2的积分是(  )
A.$\int_0^5{({2x-4})dx}$B.$\int_0^π{cosxdx}$C.$\int_1^3{\frac{1}{x}dx}$D.$\int_0^π{sinxdx}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“?x0<0,(x0-1)(x0+2)≥0”的否定是(  )
A.?x0>0,(x0-1)(x0+2)<0B.?x0<0,(x0-1)(x0+2)<0
C.?x>0,(x-1)(x+2)≥0D.?x<0,(x-1)(x+2)<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知三棱锥A-BCD的四个顶点在空间直角坐标系O-xyz中的坐标分别为A(2,0,2),B(2,1,2),C(0,2,2),D(1,2,0),画该三棱锥的三视图中的俯视图时,以xOy平面为投影面,则得到的俯视图可以为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(Ⅰ)求图中a的值;
(Ⅱ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
 晋级成功晋级失败合计
16  
  50
合计   
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.400.250.150.100.050.025
k0.7801.3232.0722.7063.8415.024
(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).

查看答案和解析>>

同步练习册答案