精英家教网 > 高中数学 > 题目详情
如图所示,长方体ABCD-A1B1C1D1中,BC=CC1=
1
2
CD,且E,F,G分别为棱BC,CD,A1B1的中点.
(1)求证:AG∥平面C1EF;
(2)求异面直线AG与C1E所成角的余弦值.
考点:异面直线及其所成的角,直线与平面平行的判定
专题:空间位置关系与距离,空间角
分析:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,由
AG
=(0,1,1),
FC1
=(0,1,1),得AG∥FC1,由此能证明AG∥平面C1EF.
(2)求出
AG
=(0,1,1),
C1E
=(
1
2
,0,-1
),由此利用向量法能求出异面直线AG与C1E所成角的余弦值.
解答: (1)证明:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设BC=CC1=
1
2
CD=1,
则A(1,0,0),G(1,1,1),
F(0,1,0),C1=(0,2,1),
AG
=(0,1,1),
FC1
=(0,1,1),
AG
FC1
,∴AG∥FC1
又AG?平面C1EF,FC1?平面C1EF,
∴AG∥平面C1EF.
(2)解:
AG
=(0,1,1),E(
1
2
,2,0),
C1E
=(
1
2
,0,-1
),
设异面直线AG与C1E所成角为θ,
则cosθ=
|
AG
C1E
|
|
AG
|•|
C1E
|
=
1
2
1+
1
4
=
10
5

∴异面直线AG与C1E所成角的余弦值为
10
5
点评:本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,PD⊥平面ABCD,AD⊥PC,AD∥BC,PD:DC:BC=1:1:
2
.求:
(1)直线PB与与平面ABCD所成角的大小;
(2)直线PB与平面PDC所成角的大小.
(3)直线PC与平面PBD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

定长为3的线段MN的两个端点M、N分别在x轴、y轴上滑动,动点P满足
NP
=2
PM

(1)求点P的轨迹方程;
(2)点P的轨迹设为曲线T,设△ABC是曲线T的内接三角形,其中A是T与x轴正半轴的交点.直线AB、AC斜率的乘积为-
1
4
,求证△ABC的重心G为定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和Sn
(1)求数列{
Sn
n
}是等差数列
(2)若a1=1,且对任意正整数n,k(n>k),都有
Sn+k
+
Sn-k
=2
Sn
成立,求数列{an}的通项公式.
(3)记bn=a(a>0),求证:
b1+b2+…+bn
n
b1+bn
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,an+1=an+n+1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M、N分别是正方体ABCD-A′B′C′D′的棱BB′和B′C′的中点,求:
(1)MN和CD′所成的角;
(2)MN和AD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

从古印度的汉诺塔传说演变了一个汉诺塔游戏:如图,有三根杆子A、B、C,A杆上有三个碟子(大小不等,自上到下,由小到大),每次移动一个碟子,小的只能叠在大的上面,把所有的碟子从A杆移到C杆上,试设计一个算法,完成上述游戏.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知S、A、B、C是球O表面上的点,SA⊥平面ABC,△ABC为等边三角形,SA=AB=1,则球O的表面积为(  )
A、
7
3
π
B、
4
3
π
C、π
D、
1
4
π

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:|x+1|≥6.

查看答案和解析>>

同步练习册答案