精英家教网 > 高中数学 > 题目详情
△ABC的三内角A,B,C所对的边长分别为a,b,c,若向量是共线向量,则角C=   
【答案】分析:由共线向量的坐标特点,得到a,b及c的关系式,然后再由余弦定理表示出cosC,把表示出的关系式代入即可得到cosC的值,由C的范围,利用特殊角的三角函数值即可求出C的度数.
解答:解:由是共线向量,得到=,即a2+b2-c2=ab,
所以cosC===,又C∈(0,180°),
则角C=60°.
故答案为:60°
点评:此题考查学生掌握向量共线满足的关系,灵活运用余弦定理及特殊角的三角函数值化简求值,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC的三内角A,B,C所对的边长分别为a,b,c,若向量
p
=(a+c,b)与
q
=(b-a,c-a)
是共线向量,则角C=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,且sinAsinC=
34

(Ⅰ)求角B的大小;
(Ⅱ)若x∈[0,π),求函数f(x)=sin(x-B)+sinx的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c分别为△ABC的三内角A,B,C的对边.求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC的三内角A、B、C所对的边分别为a、b、c,边a、b是方程x2-2
3
x+2=0的两根,角A、B满足关系2sin(A+B)-
3
=0,求角C的度数,边c的长度及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+
π
3
)+sin2x
(1)求函数f(x)的单调递减区间及最小正周期;
(2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=
6
,cosB=
1
3
,f(
C
2
)=-
1
4
,求b.

查看答案和解析>>

同步练习册答案