精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-7x-18≥0},集合B={x|2x+1>0},集合C={x|m+2<x<2m-3}.
(Ⅰ)设全集U=R,求∁UA∪B;
(Ⅱ)若A∩C=C,求实数m的取值范围.
【答案】分析:(I)由题设知,应先化简两个集合,再根据补集的定义与并集的定义求出∁UA∪B;
(II)题目中条件得出“C⊆A”,说明集合C是集合A的子集,由此分C=∅和C≠∅讨论,列端点的不等关系解得实数m的取值范围.
解答:解:(I)由x2-7x-18≥0得x≤-2,或x≥9,即A=(-∞,-2]∪[9,+∞),
由2x+1>0解得x≥-,即B=[-,+∞),
∴∁UA=(-2,9);
UA∪B=(-2,9);
(II)由A∩C=C得:C⊆A,则
当C=∅时,m+2≥2m-3,⇒m≤5,
当C≠∅时,m+2≥2m-3,⇒m≤5,
解得m≥7,
所以m∈{m|m≤5或m≥7};
点评:本题考查补集与交、并集的求法,属于集合运算中的常规,掌握运算的定义是正确解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},则A∪B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<1},B={x|x(x-2)≤0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≥1},B={x|x>2},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.则A∩B为(  )

查看答案和解析>>

同步练习册答案