精英家教网 > 高中数学 > 题目详情

已知数列{an}满足:a1,且an

(1)  求数列{an}的通项公式;

(2)  证明:对于一切正整数n,不等式a1?a2?……an<2?n!

解:(1)将条件变为:1-,因此{1-}为一个等比数列,其首项为

1-,公比,从而1-,据此得an(n³1)…………1°

(2)证:据1°得,a1?a2?…an

为证a1?a2?……an<2?n!

只要证nÎN*时有…………2°

显然,左端每个因式都是正数,先证明,对每个nÎN*,有

³1-()…………3°

用数学归纳法证明3°式:

(i)n=1时,3°式显然成立,

(ii)  设n=k时,3°式成立,

³1-(

则当n=k+1时,

³〔1-()〕?(

=1-()-

³1-()即当n=k+1时,3°式也成立。

故对一切nÎN*,3°式都成立。

利用3°得,³1-()=1-

=1-=>

故2°式成立,从而结论成立。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列(an)满足:a1=1,an>0,
a
2
n+1
-
a
2
n
=1(n∈N*),那么使an<5成立的n的最大值为
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1,且an

(1)       求数列{an}的通项公式;

(2)       证明:对于一切正整数n,不等式a1?a2?……an<2?n!

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三上学期第三次理科数学测试卷(解析版) 题型:解答题

已知数列{an}满足:a1,且an

(1)   求数列{an}的通项公式;

(2)   证明:对于一切正整数n,不等式a1·a2·……an<2·n!

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省高二上学期第三次阶段性测试理科数学卷 题型:选择题

已知数列{an}满足a1= 2,an+1-an+1=0(n∈N+),则此数列的通项an等于(    )

A.n2+1           B.n+1           C.1-n              D.3-n

 

查看答案和解析>>

科目:高中数学 来源:2010-2011吉林一中高一下学期期末数学 题型:选择题

已知数列{an}满足a1>0,=,则数列{an}是  (  )

 

A.递增数列     B.递减数列     C.摆动数列     D.常数列

 

查看答案和解析>>

同步练习册答案