精英家教网 > 高中数学 > 题目详情
4.定义在[1,+∞)上的函数f(x)满足:(1)f(2x)=2f(x);(2)当2≤x≤4时,f(x)=1-|x-3|.则集合A={x|f(x)=f(61)}中的最小元素是(  )
A.13B.11C.9D.6

分析 根据各分段的函数解析式可以归纳出:x∈[2n,2n+1]时,f(x)=2n-1-|x-3•2n-1|,再结合函数图象解出f(x)=f(61)的最小的x.

解答 解:因为x∈[2,4]时,f(x)=1-|x-3|,其值域为[0,1],且先增后减,所以,
x∈[4,8]时,f(x)=2f($\frac{x}{2}$)=2[1-|$\frac{x}{2}$-3|]=2-|x-6|,值域为[0,2],
x∈[8,16]时,f(x)=2f($\frac{x}{2}$)=2[2-|$\frac{x}{2}$-6|]=4-|x-12|,值域为[0,4],
x∈[16,32]时,f(x)=2f($\frac{x}{2}$)=2[4-|$\frac{x}{2}$-12|]=8-|x-24|,值域为[0,8],
x∈[32,64]时,f(x)=2f($\frac{x}{2}$)=2[8-|$\frac{x}{2}$-24|]=16-|x-48|,值域为[0,16],
…,
一般地,x∈[2n,2n+1]时,f(x)=2n-1-|x-3•2n-1|,值域为[0,2n-1].
而61∈[25,26],即n=5,所以,f(61)=16-|61-48|=3,
由于f(x)=f(61)=3,要使x最小,可设x∈[3,8],
即令4-|x-12|=3,解得x=11或13,
所以,满足f(x)=f(61)的最小x的值为11.
故选:B.

点评 本题主要考查了抽象函数的应用,涉及分段函数解析式的求法和函数值的确定,运用了归纳推理题的解题思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求双曲线C:x2-$\frac{{y}^{2}}{64}$=1经过φ:$\left\{\begin{array}{l}{x′=3x}\\{2y′=y}\end{array}\right.$变换后所得曲线C′的焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知过点M(x1、y1)的直线l1:x1x+3y1y=6与过点N(x2,y2)(其中x2≠x1)的直线l2:x2x+y2y=6的交点E在双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{2}$=1上,直线MN与两条渐近线分别交与G、H两点,P为GH的中点.
(1)证明:|OP|=|OE|;
(2)求△OPG的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和为Sn,若a10=2,S10=10,则a19等于(  )
A.$\frac{15}{2}$B.4C.$\frac{19}{4}$D.$\frac{19}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.分别写出下列直线的斜率以及它们在x轴、y轴上的截距.
(1)x+2y=4;
(2)y=2(x+3);
(3)y-1=-3(x-2);
(4)$\frac{x}{2}$+$\frac{y}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.直线l过直线x+y-2=0与x-y-4=0的交点且平行与直线x-3y-1=0,求直线l的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正项数列{an},a2-1、a3、a7成等比数列,{an}前n项和Sn满足an+12=2Sn+n+4,则(n-6)Sn的最小值为(  )
A.-26B.-27C.-28D.-30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆(x+m)2+(y-2m)2=4m+4的面积为16π,则圆心坐标为(-3,6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法中正确的是(  )
A.120°角与420°角的终边相同
B.若α是锐角.则2α是第二象限的角
C.-240°角与480°角都是第三象限的角
D.60°角与-420°角的终边关于x轴对称

查看答案和解析>>

同步练习册答案