精英家教网 > 高中数学 > 题目详情
已知a,b,c是实数,下列命题正确的是(  )
分析:结合不等式的性质,利用充分条件和必要条件的定义分别进行判断.
解答:解:A.当a=0,b=-1时,满足a>b,但a2>b2不成立,∴A错误.
B.由
1
a
1
b
1
a
-
1
b
=
b-a
ab
<0
,则当a>b,ab>0时,
1
a
-
1
b
=
b-a
ab
<0
成立,当a=-1,b=1时,满足
1
a
1
b
但a>b,ab>0不成立,∴“a>b,ab>0”是“
1
a
1
b
”的充分不必要条件,∴B错误.
C.∵函数y=x3,在R上为增函数,∴“a>b”是“a3>b3”的充要条件,∴C正确.
D.当c=0时,ac2=bc2=0,若ac2>bc2,则c≠0,∴a>b,即“a>b”是“ac2>bc2”的必要不充分条件,∴D错误.
故选:C.
点评:本题主要考查充分条件和必要条件的应用,利用不等式的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

21、已知a、b、c是实数,且a2+b2+c2=1,求2a+b+2c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤1.
(1)证明:|c|≤1;
(2)证明:当-1≤x≤1时,|g(x)|≤2;
(3)设a>0,有-1≤x≤1时,g(x)的最大值为2,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①x2≠y2?x≠y或x≠-y;
②命题“若a,b是偶数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a、b都不是偶数”;
③若“p或q”为假命题,则“非p且非q”是真命题;
④已知a、b、c是实数,关于x的不等式ax2+bx+c≤0的解集是空集,必有a>0且△≤0;
⑤设f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,则a2010=(-
1
2
)2011

正确的是
③⑤
③⑤
.(填番号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c是实数,条件p:abc=0;条件q:a=0,则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是实数,则:
(1)“a>b”是“a2>b2”的充分条件;
(2)“a>b”是“a2>b2”的必要条件;
(3)“a>b”是“ac2>bc2”的充分条件;
(4)“a>b”是“|a|>|b|”的充要条件.其中是假命题的是
(1)(2)(3)(4)
(1)(2)(3)(4)

查看答案和解析>>

同步练习册答案