【题目】如图,在等腰梯形中, , , ,四边形为矩形,平面平面, .
(1)求证: 平面;
(2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.
【答案】(1)见解析;(2).
【解析】试题分析:(1)要证线面垂直,一般先证线线垂直,这里由已知的面面垂直可得,另外可由直角梯形的条件证得;
(2)本小题相当于求二面角,因此我们以为坐标轴建立空间直角坐标系,写出各点坐标,同时设出点坐标,然后求出平面与平面的法向量,由法向量的夹角的余弦表示出二面角的余弦,最后由函数的性质可求得其取值范围.
试题解析:(1)证明:在梯形中,
∵, , ,∴,
∴,
∴,∴,∴平面平面,平面平面, 平面,∴平面
(2)由(1)可建立分别以直线为轴, 轴, 轴的如图所示空间直角坐标系,
令,则,
∴.
设为平面的一个法向量,
由,得,
取,则,
∵是平面的一个法向量,
∴.
∵,∴当时, 有最小值,
当时, 有最大值,∴
科目:高中数学 来源: 题型:
【题目】为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示.据图中提供的信息,回答下列问题:
(1)写出从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。那么药物释放开始,至少需要经过多少小时后,学生才能回到教室?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC-A1B1C1中,AC=BC=AB=2,AA1=3,D点是AB的中点
(1)求证:BC1∥平面CA1D.
(2)求三棱锥B-A1DC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机卖场对市民进行华为手机认可度的调查,随机抽取200名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:
(1)求频率分布表中的值,并补全频率分布直方图;
(2)利用频率分布直方图估计被抽查市民的平均年龄
(3)从年龄在, 的被抽查者中利用分层抽样选取10人参加华为手机用户体验问卷调查,再从这10人中选出2人,求这2人在不同的年龄组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据2,,如表所示:
试销单价元 | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量件 | 90 | 84 | 83 | 80 | q | 68 |
已知.
求表格中q的值;
已知变量x,y具有线性相关性,试利用最小二乘法原理,求产品销量y关于试销单价x的线性回归方程参考数据;
用中的回归方程得到的与对应的产品销量的估计值记为2,,当时,则称为一个“理想数据”试确定销售单价分别为4,5,6时有哪些是“理想数据”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆()的离心率是,点在短轴上,且。
(1)球椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函f(x)=x2﹣x+alnx.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证f(x2)< .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,平面SAB⊥底面ABCD,且SA=SB= ,AD=1,AB=2,BC=3.
(1)求证:SB⊥平面SAD;
(2)求二面角D﹣SC﹣B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com