精英家教网 > 高中数学 > 题目详情

【题目】已知函数 . (Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,设函数 ,若在[1,e]上至少存在一点x0 , 使得f(x0)≥g(x0)成立,求实数a的取值范围.

【答案】解:(Ⅰ)当a=1时,函数

∴f(1)=1﹣1﹣ln1=0.

曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=1+1﹣1=1.

从而曲线f(x)在点(1,f(1))处的切线方程为y﹣0=x﹣1,

即y=x﹣1.

(Ⅱ)

要使f(x)在定义域(0,+∞)内是增函数,只需f′(x)≥0在(0,+∞)内恒成立.

即:ax2﹣x+a≥0得: 恒成立.

由于

∴f(x)在(0,+∞)内为增函数,实数a的取值范围是

(III)∵ 在[1,e]上是减函数

∴x=e时,g(x)min=1,x=1时,g(x)max=e,即g(x)∈[1,e]

f'(x)= 令h(x)=ax2﹣x+a

时,由(II)知f(x)在[1,e]上是增函数,f(1)=0<1

在[1,e]上是减函数,故只需f(x)max≥g(x)min,x∈[1,e]

而f(x)max=f(e)= ,g(x)min=1,即)= ≥1

解得a≥

∴实数a的取值范围是[ ,+∞)


【解析】(Ⅰ)当a=1时,求出切点坐标,然后求出f'(x),从而求出f'(1)的值即为切线的斜率,利用点斜式可求出切线方程;(Ⅱ)先求导函数,要使f(x)在定义域(0,+∞)内是增函数,只需f′(x)≥0在(0,+∞)内恒成立,然后将a分离,利用基本不等式可求出a的取值范围;(III)根据g(x)在[1,e]上的单调性求出其值域,然后根据(II)可求出f(x)的最大值,要使在[1,e]上至少存在一点x0,使得f(x0)≥g(x0)成立,只需f(x)max≥g(x)min,x∈[1,e],然后建立不等式,解之即可求出a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 上有最大值9,最小值4.
(1)求实数 的值;
(2)若不等式 上恒成立,求实数 的取值范围;
(3)若方程 有三个不同的实数根,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3 cm,高为4 cm,圆锥的高为3 cm,画出此几何体的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线 =1(a>0,b>0)上任意一点P可向圆x2+y2=( 2作切线PA,PB,若存在点P使得 =0,则双曲线的离心率的取值范围是(
A.[ ,+∞)
B.(1, ]
C.[
D.(1,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足(x﹣a)(x﹣3a)<0,其中a>0,命题q:实数x满足 2<x≤3.
(1)若a=1,有p且q为真,求实数x的取值范围.
(2)若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为△ 所在平面外一点,且 两两垂直,则下列结论:① ;② ;③ ;④ .其中正确的是( )
A.①②③
B.①②④
C.②③④
D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数) (Ⅰ)当a=4时,求函数y=f(x)的单调区间;
(Ⅱ)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式[2tx2﹣(t2﹣1)x+2]lnx≤0对任意x∈(0,+∞)恒成立,则实数t的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)=Acos(ωx+φ)(A,ω>0)的图象如图所示,为得到g(x)=﹣Asin(ωx+ )的图象,可以将f(x)的图象(
A.向右平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向左平移 个单位长度

查看答案和解析>>

同步练习册答案