【题目】已知函数 . (Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,设函数 ,若在[1,e]上至少存在一点x0 , 使得f(x0)≥g(x0)成立,求实数a的取值范围.
【答案】解:(Ⅰ)当a=1时,函数 ,
∴f(1)=1﹣1﹣ln1=0. ,
曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=1+1﹣1=1.
从而曲线f(x)在点(1,f(1))处的切线方程为y﹣0=x﹣1,
即y=x﹣1.
(Ⅱ) .
要使f(x)在定义域(0,+∞)内是增函数,只需f′(x)≥0在(0,+∞)内恒成立.
即:ax2﹣x+a≥0得: 恒成立.
由于 ,
∴ ,
∴
∴f(x)在(0,+∞)内为增函数,实数a的取值范围是 .
(III)∵ 在[1,e]上是减函数
∴x=e时,g(x)min=1,x=1时,g(x)max=e,即g(x)∈[1,e]
f'(x)= 令h(x)=ax2﹣x+a
当 时,由(II)知f(x)在[1,e]上是增函数,f(1)=0<1
又 在[1,e]上是减函数,故只需f(x)max≥g(x)min,x∈[1,e]
而f(x)max=f(e)= ,g(x)min=1,即)= ≥1
解得a≥
∴实数a的取值范围是[ ,+∞)
【解析】(Ⅰ)当a=1时,求出切点坐标,然后求出f'(x),从而求出f'(1)的值即为切线的斜率,利用点斜式可求出切线方程;(Ⅱ)先求导函数,要使f(x)在定义域(0,+∞)内是增函数,只需f′(x)≥0在(0,+∞)内恒成立,然后将a分离,利用基本不等式可求出a的取值范围;(III)根据g(x)在[1,e]上的单调性求出其值域,然后根据(II)可求出f(x)的最大值,要使在[1,e]上至少存在一点x0,使得f(x0)≥g(x0)成立,只需f(x)max≥g(x)min,x∈[1,e],然后建立不等式,解之即可求出a的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数 , . 在 上有最大值9,最小值4.
(1)求实数 的值;
(2)若不等式 在 上恒成立,求实数 的取值范围;
(3)若方程 有三个不同的实数根,求实数 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3 cm,高为4 cm,圆锥的高为3 cm,画出此几何体的直观图.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线 ﹣ =1(a>0,b>0)上任意一点P可向圆x2+y2=( )2作切线PA,PB,若存在点P使得 =0,则双曲线的离心率的取值范围是( )
A.[ ,+∞)
B.(1, ]
C.[ , )
D.(1, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数x满足(x﹣a)(x﹣3a)<0,其中a>0,命题q:实数x满足 2<x≤3.
(1)若a=1,有p且q为真,求实数x的取值范围.
(2)若p是q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 为△ 所在平面外一点,且 , , 两两垂直,则下列结论:① ;② ;③ ;④ .其中正确的是( )
A.①②③
B.①②④
C.②③④
D.①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数) (Ⅰ)当a=4时,求函数y=f(x)的单调区间;
(Ⅱ)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一个实根,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)=Acos(ωx+φ)(A,ω>0)的图象如图所示,为得到g(x)=﹣Asin(ωx+ )的图象,可以将f(x)的图象( )
A.向右平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向左平移 个单位长度
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com