精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ﹣k( +lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为(
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)

【答案】C
【解析】解:∵函数f(x)= ﹣k( +lnx),

∴函数f(x)的定义域是(0,+∞)

∴f′(x)= ﹣k(﹣ + )=

∵x=2是函数f(x)的唯一一个极值点

∴x=2是导函数f′(x)=0的唯一根.

∴ex﹣kx=0在(0,+∞)无变号零点,

令g(x)=ex﹣kx

g′(x)=ex﹣k

①k≤0时,g′(x)>0恒成立.g(x)在(0,+∞)时单调递增的

g(x)的最小值为g(0)=1,g(x)=0无解

②k>0时,g′(x)=0有解为:x=lnk

0<x<lnk时,g′(x)<0,g(x)单调递减

lnk<x时,g′(x)>0,g(x)单调递增

∴g(x)的最小值为g(lnk)=k﹣klnk

∴k﹣klnk>0

∴k<e,

由y=ex和y=ex图象,它们切于(1,e),

综上所述,k≤e.

故选C.

由f(x)的导函数形式可以看出,需要对k进行分类讨论来确定导函数为0时的根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中中点.

1)求证 平面

2)求异面直线所成角的余弦值;

3)线段上是否存在,使得它到平面的距离为?若存在,求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣4x,g(x)=﹣x2﹣3. (Ⅰ)求函数f(x)在x=1处的切线方程;
(Ⅱ)若存在x0∈[e,e2],使得f(x0)<g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体P﹣ABCD中,△ABD是边长为2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=
(1)求证:PA⊥BD;
(2)已知E是PA上一点,且BE∥平面PCD.若PC=2,求点E到平面ABCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2018x+log2018x,则函数f(x)的零点个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与直线,其中为常数.

1,求的值;

2若点上,直线点,且在两坐标轴上的截距之和为0,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱 分别为 的中点.

1)求证: 平面

2)求异面直线 所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于空间两不同的直线,两不同的平面,有下列推理:

(1), (2),(3)

(4), (5)

其中推理正确的序号为( )

A. (1)(3)(4) B. (2)(3)(5) C. (4)(5) D. (2)(3)(4)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)当时,求函数上的最大值;

(2)对任意的都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案