精英家教网 > 高中数学 > 题目详情
2.若f(x)=|log2x|-m有两个零点x1,x2(x1>x2),则${x_1}^2+4{x_2}^2$的最小值为4.

分析 由题意可知:求得f(x)的两个零点,则${x_1}^2+4{x_2}^2$=22m+4($\frac{1}{2}$)2m=22m+22-2m≥2$\sqrt{{2}^{2m}•{2}^{2-2m}}$=2$\sqrt{{2}^{2m+2-2m}}$=4.

解答 解:由题意可知:f(x)=|log2x|-m有两个零点x1,x2(x1>x2),则x1=2m,x2=($\frac{1}{2}$)m
${x_1}^2+4{x_2}^2$=22m+4($\frac{1}{2}$)2m=22m+22×2-2m=22m+22-2m≥2$\sqrt{{2}^{2m}•{2}^{2-2m}}$=2$\sqrt{{2}^{2m+2-2m}}$=4,
∴${x_1}^2+4{x_2}^2$的最小值4.
故答案为:4.

点评 本题考查函数零点定理的判定,考查含绝对值的函数的零点判断,基本不等式的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设f(x)=x2-$\frac{1}{x-2}\;,\;\;g(x)=\frac{1}{x-2}$+1,则f(x)+g(x)=x2+1,x≠2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线l经过点(-1,3),且斜率为-2,则直线l的方程为2x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数$y=\sqrt{1-2x}$的反函数的值域是$(-∞,\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数$f(x)={log_3}({{x^2}+ax-a})$的值域是R,则实数a的取值范围是(-∞,-4]∪[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.记不等式2|x-1|+x-1≤1的解集为M,不等式16x2-8x+1≤4的解集为N,求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\sqrt{{x^2}+mx+1}$的定义域为R,则实数m的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+φ)(A、ω>0)的图象如图所示,则其解析式可以是(  )
A.$y=sin({x+\frac{π}{6}})$B.$y=sin({x+\frac{π}{3}})$C.$y=sin({2x-\frac{2π}{3}})$D.$y=sin({2x+\frac{π}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列命题
①“等边三角形的三内角均为60°”的逆命题
②若k>0,则方程x2+2x-k=0有实根“的逆命题
③“全等三角形的面积相等”的否命题
④“若ab≠0,则a≠0”的逆否命题,
其中真命题的个数是:2.

查看答案和解析>>

同步练习册答案