精英家教网 > 高中数学 > 题目详情

【题目】成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5.

(1)求数列{bn}的通项公式;

(2)数列{bn}的前n项和为Sn,求证:数列是等比数列.

【答案】见解析

【解析】

(1)解 设成等差数列的三个正数分别为a-d,a,a+d.

依题意,得a-d+a+a+d=15.

解得a=5.

所以{bn}中的b3,b4,b5依次为7-d,10,18+d.

依题意,有(7-d)(18+d)=100,

解得d=2或d=-13(舍去).

故{bn}的第3项为5,公比为2.

由b3=b1·22,即5=b1·22

解得b1.

所以bn=b1·qn-1·2n-1=5·2n-3

即数列{bn}的通项公式bn=5·2n-3.

(2)证明 由(1)得数列{bn}的前n项和

Sn=5·2n-2,即Sn=5·2n-2.

所以S1=2.

因此是以为首项,2为公比的等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4;坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线

(Ⅰ)求直线的普通方程和曲线的直角坐标方程.

(Ⅱ)求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(2,2)函数g(x)f(x1)f(32x)

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是半圆的直径,是将半圆圆周四等分的三个分点

(1)从这5个点中任取3个点,求这3个点组成直角三角形的概率;

(2)在半圆内任取一点,求的面积大于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.

求证:(1)平面ADE⊥平面BCC1B1.

(2)直线A1F∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届江西省南昌市高三第一次模拟考试数学(理)】已知函数,是自然对数的底数).

(1)若上的单调递增函数,求实数的取值范围;

(2)当时,证明:函数有最小值,并求函数最小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届河北省衡水中学高三上学期六调】已知函数,其中均为实数,为自然对数的底数.

(1)求函数的极值;

(2)设,若对任意的恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的左焦点F为圆的圆心,且椭圆C上的点到点F的距离最小值为

I)求椭圆C的方程;

II)已知经过点F的动直线与椭圆C交于不同的两点AB,点M坐标为),证明: 为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017兰州高考模拟.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求证:平面EBC⊥平面EBD;

(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案