精英家教网 > 高中数学 > 题目详情
选修4~4:坐标系与参数方程
在直角坐标系xOy中,直线l的参数方程为
x=1+tcosα
y=2+tsinα
(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位.且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=6sinθ.
(I)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求|PA|+|PB|的最小值.
分析:(I)利用x=ρcosθ,y=ρsinθ可将圆C极坐标方程化为直角坐标方程;
(II)先根据(I)得出圆C的普通方程,再根据直线与交与交于A,B两点,可以把直线与曲线联立方程,用根与系数关系结合直线参数方程的几何意义,表示出|PA|+|PB|,最后根据三角函数的性质,即可得到求解最小值.
解答:解:(Ⅰ)由ρ=6sinθ得ρ2=6ρsinθ,化为直角坐标方程为x2+y2=6y,即x2+(y-3)2=9.
(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得t2+2(cosα-sinα)t-7=0.
由△=(2cosα-2sinα)2+4×7>0,故可设t1,t2是上述方程的两根,
所以
t1+t2=-2(cosα-sinα)
t1t2=-7
又直线l过点(1,2),
故结合t的几何意义得|PA|+|PB|=|t1|+|t2|=|t1-t2|=
(t1+t2)2-4t1t2
=
4(cosα-sinα)2+28
=
32-4sin2α
32-4
=2
7

所以|PA|+|PB|的最小值为2
7
点评:此题主要考查参数方程的优越性,及直线与曲线相交的问题,在此类问题中一般可用联立方程式后用韦达定理求解即可,属于综合性试题有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源:2012年普通高等学校招生全国统一考试湖北卷数学理科 题型:022

(选修4-4:坐标系与参数方程)

在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知射线与曲线(t为参数);相交于AB两点,则线段AB的中点的直角坐标为________.

查看答案和解析>>

科目:高中数学 来源:2011年普通高等学校招生全国统一考试文科数学试题新课标卷 题型:044

选修4-4:坐标系与参数方程

在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2

(Ⅰ)求C2的方程

(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.

查看答案和解析>>

科目:高中数学 来源:2011年普通高等学校招生全国统一考试理科数学试题新课标卷 题型:044

选修4-4:坐标系与参数方程

在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2

(Ⅰ)求C2的方程

(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.

查看答案和解析>>

科目:高中数学 来源:江苏省苏北四市2010届高三第三次模拟考试 题型:解答题

 

A.选修4-1(几何证明选讲)

如图,是边长为的正方形,以为圆心,为半径的圆弧与以为直径的交于点,延长.(1)求证:的中点;(2)求线段的长.

 

 

 

 

 

 

B.选修4-2(矩阵与变换)

已知矩阵,若矩阵属于特征值3的一个特征向量为,属于特征值-1的一个特征向量为,求矩阵

 

C.选修4-4(坐标系与参数方程)

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数),求直线被曲线所截得的弦长.

 

 D.选修4—5(不等式选讲)

已知实数满足,求的最小值;

 

 

查看答案和解析>>

科目:高中数学 来源:宁夏银川一中2010届高三第四次月考(理) 题型:解答题

 (选修4-4:坐标系与参数方程.)

已知直线经过点P(1,1),倾斜角

(1)写出直线的参数方程

(2)设与圆x2+y2=4相交与两点A、B,求点P到A、B两点的距离之积

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案