精英家教网 > 高中数学 > 题目详情

【题目】古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )
A.289
B.1024
C.1225
D.1378

【答案】C
【解析】解答:选C.观察三角形数:1,3,6,10,…,记该数列为{an},则a1=1,a2=a1+2,
a3=a2+3,

an=an-1+n.
所以a1+a2+…+an
=(a1+a2+…+an-1)+(1+2+3+…+n)an=1+2+3+…+n=
观察正方形数:1,4,9,16,…,记该数列为{bn},
则bn=n2.把四个选项的数字,分别代入上述两个通项公式,可知使得n都为正整数的只有1225.
分析:观察图形写出前几项找出规律,利用归纳推理猜想第n项的表达式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);

轿车A

轿车B

轿车C

舒适型

100

150

z

标准型

300

450

600

按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x>0).
(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;
(2)若f(x)> 恒成立,求整数k的最大值;
(3)求证:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,E,F分别为PA,BD中点,PA=PD=AD=2.
(Ⅰ)求证:EF∥平面PBC;
(Ⅱ)求二面角E﹣DF﹣A的余弦值;
(Ⅲ)在棱PC上是否存在一点G,使GF⊥平面EDF?若存在,指出点G的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若等比数列{an}的前n项和Sn=2016n+t(t为常数),则a1的值为(
A.2013
B.2014
C.2015
D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a3=6,a5+a7=24,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn= (n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足:函数的图象关于直线对称,且当是函数的导函数)成立.若,则的大小关系是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,椭圆的左、右焦点分别为 也是抛物线的焦点,点在第一象限的交点,且.

(1)求的方程;

(2)平面上的点满足,直线,且与交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过两条直线l1:3x+4y﹣5=0和l2:2x﹣3y+8=0的交点M.
(1)若直线l与直线2x+y+2=0垂直,求直线l的方程;
(2)若直线l′与直线l1关于点(1,﹣1)对称,求直线l′的方程.

查看答案和解析>>

同步练习册答案