精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中 为自然对数的底数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当时,若函数的图象恒在直线的上方,求实数a的取值范围.

【答案】(Ⅰ)见详解;(Ⅱ)

【解析】

(Ⅰ)由求导可得:,因为可得,再根据两者的大小关系进行分类讨论可得函数的单调区间;

(Ⅱ)由已知可得上恒成立,再分类讨论时,时和时函数的最小值,由即可求解.

(Ⅰ)由求导可得:

.

可得,且

①当时,即

在此区间单调递增;

在此区间单调递减;

②当时,即

在此区间单调递增;

在此区间单调递减;

③当时,即

R上单调递增;

(Ⅱ)由已知可得上恒成立.

①当时,由(Ⅰ)可知上单调递增,

,解得:

②当时,即

由(Ⅰ)可知上单调递增,在上单调递减,

解得

③当时,即

由(Ⅰ)可知上单调递减,

,解得此种情况a无解.

综上,a的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若的极小值为,求的值;

(Ⅱ)若对任意,都有恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,,是经过小城的东西方向与南北方向的两条公路,小城位于小城的东北方向,直线距离.现规划经过小城修建公路(,分别在上),与,围成三角形区域.

(1)设,求三角形区域周长的函数解析式;

(2)现计划开发周长最短的三角形区域,求该开发区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最小值1,最大值9.

1)求实数ab的值;

2)设,若不等式在区间上恒成立,求实数k的取值范围;

3)设),若函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).

(1)应收集多少位女生的样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

1)若的两个不同的根,是否存在实数,使成立?若存在,求的值;若不存在,请说明理由.

2)设,函数已知方程恰有3个不同的根.

)求的取值范围;

)设分别是这3个根中的最小值与最大值,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)log4(4x1)kx(k∈R)是偶函数.

(1)k的值;

(2)g(x)log4,若函数f(x)g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为4的正方形与矩形所在平面互相垂直,分别为的中点,

1)求证:平面

2)求证:平面

(3)在线段上是否存在一点,使得?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)当 恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案