精英家教网 > 高中数学 > 题目详情
广州某商场根据以往某种商品的销售记录,绘制了日销售量的频率分布表(如表)和频率分布直方图(如图). 
分组频数频率
[0,50]n10.15
(50,100]n20.25
(100,150]n30.30
(150,200]n40.20
(200,250]n50.10
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求a1,a3的值.
(2)求在未来连续3天里,有连续2天的日销售量都高于100个且另1天的日销售量不高于50个的概率;
(3)用X表示在未来3天里日销售量高于100个的天数,求随机变量X的分布列和数学期望.
考点:离散型随机变量的期望与方差,频率分布直方图,离散型随机变量及其分布列
专题:概率与统计
分析:(1)由频率分布直方图,能求出a1,a3的值.
(2)设A1表示事件“日销售量高于100个”,A2表示事件“日销售量不高于50个”,B表示事件“在未来连续3天里有连续2天日销售量高于100个且另1天销售量不高于50个”,由此能求出结果.
(3)X的可能取值为0,1,2,3,且X~B(3,0.6),由此能求出X的分布列和EX.
解答: (本小题满分12分)
(1)解:由频率分布直方图,得:
a1=
0.10
50
=0.002
a3=
0.20
50
=0.004
.…(2分)
(2)解:设A1表示事件“日销售量高于100个”,A2表示事件“日销售量不高于50个”,
B表示事件“在未来连续3天里有连续2天日销售量高于100个且另1天销售量不高于50个”.
P(A1)=0.30+0.20+0.10=0.6,P(A2)=0.15,
故所求概率:P(B)=0.6×0.6×0.15×2=0.108.…(5分)
(3)解:依题意,X的可能取值为0,1,2,3,且X~B(3,0.6).…(6分)
P(X=0)=
C
0
3
•(1-0.6)3=0.064

P(X=1)=
C
1
3
×0.6×(1-0.6)2=0.288

P(X=2)=
C
2
3
×0.62×(1-0.6)=0.432

P(X=3)=
C
3
3
×0.63=0.216
,…(10分)
∴X的分布列为
X0123
P0.0640.2880.4320.216
…(11分)
∴EX=3×0.6=1.8.…(12分)
点评:本题考查频率分布直方图的应用,考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x>0},B={x|
x
x-1
<0},则A∩B等于(  )
A、(0,1)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1+a2+…+an=
n
2
an+1(n∈N*),数列{bn}为等比数列,a1=b1=2,a2=b2
(Ⅰ)求{an}、{bn}的 通项公式.
(Ⅱ)若对每个正整数k,在bk和bk+1之间插入ak个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ=
1
2
,求θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在人群流量较大的街道,有一中年人吆喝“送钱”,已知他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者10元钱;若摸得非同一颜色的3个球,摸球者付给摊主2元钱.
(Ⅰ)任意摸球一次,求摸球者获得10元的概率.
(Ⅱ)假定一天中有200人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,将线段AB围成一个圆,使两端点A、B恰好重合,再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),连接AM并延长交x轴交于点N(n,0),则区间(0,1)中实数m的像就是n,记作f(m)=n.
(1)f(
1
3
)=
 

(2)0<m<1时,f(m)的解析式是f(m)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,既是偶函数,又在(0,+∞)上是单调减函数的是(  )
A、y=x
1
2
B、y=cosx
C、y=ln|x+1|
D、y=-2|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=cos2x+asinx在区间(
π
6
π
2
)是减函数,则a的取值范围是(  )
A、(2,4)
B、(-∞,2]
C、(-∞,4]
D、[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
•(
b
+
c
),其中向量
a
=(sinx,-cosx),
b
=(sinx,-3cosx),
c
=(-cosx,sinx),x∈R.
(1)求函数f(x)的单调减区间;
(2)函数y=f(x)的图象可由函数y=sinx的图象经过怎样变化得出?
(3)若不等式|f(x)-m|<2在x∈[
π
8
π
2
]上恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案