精英家教网 > 高中数学 > 题目详情

【题目】点A,B,C,D在同一个球的球面上,AB=BC=1,∠ABC=120°,若四面体ABCD体积的最大值为 ,则这个球的表面积为(
A.
B.4π
C.
D.

【答案】D
【解析】解:根据题意知,A、B、C三点均在球心O的表面上, 且|AB|=|AC|=1,∠BAC=120°,
∴BC=
∴△ABC外接圆半径2r=2,即r=1,
∴SABC= ×1×1×sin120°=
小圆的圆心为Q,若四面体ABCD的体积的最大值,由于底面积SABC不变,高最大时体积最大,
所以,DQ与面ABC垂直时体积最大,最大值为 SABC×DQ=
∴DQ=3,
设球的半径为R,则
在直角△AQO中,OA2=AQ2+OQ2 , 即R2=12+(3﹣R)2 , ∴R=
∴球的表面积为 =
故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过正方体ABCD﹣A1B1C1D1的顶点A的平面α与平面CB1D1平行,设α∩平面ABCD=m,α∩平面ABB1A1=n,那么m,n所成角的余弦值等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣x+2
(Ⅰ)求函数y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)令g(x)= +lnx,若函数y=g(x)在(e,+∞)内有极值,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的实义域为R,其图象关于点(﹣1,0)中心对称,其导函数为f′(x),当x<﹣1时,(x+1)[f(x)+(x+1)f′(x)]<0.则不等式xf(x﹣1)>f(0)的解集为( )
A.(1,+∞)
B.(﹣∞,﹣1)
C.(﹣1,1)
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为 ρcos(θ+ )﹣1=0,曲线C的参数方程是 (t为参数).
(1)求直线l和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的一个顶点为A(0,﹣1),焦点在x轴上,若椭圆右焦点到直线x﹣y+2 =0的距离为3 (Ⅰ)求椭圆E的方程;
(Ⅱ)设直线l:y=kx+m(k≠0)与该椭圆交于不同的两点B,C,若坐标原点O到直线l的距离为 ,求△BOC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体ABCD﹣A1B1C1D1中,底面ABCD是正方形,AA1=2,AB=1,E是DD1上的一点.
(1)求异面直线AC与B1D所成的角;
(2)若B1D⊥平面ACE,求三棱锥A﹣CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x﹣a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个函数f(x)=2x+x,g(x)=x﹣1,h(x)=log3x+x的零点依次为a,b,c,则(
A.a<b<c
B.b<a<c
C.c<a<b
D.a<c<b

查看答案和解析>>

同步练习册答案