精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则a的取值范围是(  )
A.(﹣∞,4]
B.(﹣∞,2]
C.(﹣4,4]
D.(﹣4,2]

【答案】C
【解析】解:若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,
则当x∈[2,+∞)时,
x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数
, f(2)=4+a>0
解得﹣4<a≤4
故选C
【考点精析】根据题目的已知条件,利用复合函数单调性的判断方法和二次函数的性质的相关知识可以得到问题的答案,需要掌握复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在棱锥中,侧面是边长为2的正三角形,底面是菱形,且的中点,二面角.

(1)求证:平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右两个焦点为,离心率为,过点.

(1)求椭圆C的标准方程;

(2)设直线与椭圆C相交于两点,椭圆的左顶点为,连接并延长交直线两点 ,分别为的纵坐标,且满足.求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若 ,求函数 处的切线方程
(2)设函数 ,求 的单调区间.
(3)若存在 ,使得 成立,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是R上的单调增函数且为奇函数,数列是等差数列,>0,则的值 ( )
A.恒为正数
B.恒为负数
C.恒为0
D.可正可负

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,且,点是棱的中点,平面与棱交于点

(1)求证:

(2)若,且平面平面,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,不等式 的解集为[-1,5]
(1)求实数 的值;
(2)若 恒成立,求实数 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是直线上的动点,过点P作圆的两条切线,A,B是切点,C是圆心,若四边形PACB面积的最小值为2,则的值为(  )

A. 3 B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,动点M到定点F(-,0)的距离与它到定直线l:x=-的距离之比为常数.

(1)求动点M的轨迹Γ的方程;

(2)设点A,P(1)中轨迹Γ上的动点,求线段PA的中点B的轨迹方程.

查看答案和解析>>

同步练习册答案