【题目】已知椭圆经过点,,点为椭圆的右顶点,直线与椭圆相交于不同于点的两个点、.
(1)求椭圆的标准方程;
(2)当时,求面积的最大值;
(3)若,求证:为定值.
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,底面为菱形,,,平面,,.
(1)若点,分别在,上,且,,证明平面.
(2)若平面平面,求平面把多面体分成大、小两部分的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中真命题是( )
(1)在的二项式展开式中,共有项有理项;
(2)若事件、满足,,,则事件、是相互独立事件;
(3)根据最近天某医院新增疑似病例数据,“总体均值为,总体方差为”,可以推测“最近天,该医院每天新增疑似病例不超过人”.
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(是非零实常数)满足且方程有且仅有一个实数解.
(1)求的值
(2)当时,不等式恒成立,求实数的取值范围
(3)在直角坐标系中,求定点到函数图像上的任意一点的距离的最小值,并求取得最小值时的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线(为参数),将曲线上的所有点的横坐标保持不变,纵坐标缩短为原来的后得到曲线;以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线和直线的直角坐标方程;
(2)已知,设直线与曲线交于不同的、两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、.经过点且倾斜角为的直线与椭圆交于、两点(其中点在轴上方),的周长为8.
(1)求椭圆的标准方程;
(2)如图,把平面沿轴折起来,使轴正半轴和轴确定的半平面,与负半轴和轴所确定的半平面互相垂直.
①若,求异面直线和所成角的大小;
②若折叠后的周长为,求的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数满足:对于任意正数,都有,且,则称函数为“L函数”.
(1)试判断函数与是否是“L函数”;
(2)若函数为“L函数”,求实数a的取值范围;
(3)若函数为“L函数”,且,求证:对任意,都有.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com