精英家教网 > 高中数学 > 题目详情
已知椭圆C:(a>b>0)的长轴长是短轴长的两倍,焦距为
(1)求椭圆C的标准方程;
(2)设不过原点O的直线l与椭圆C交于两点M、N,且直线OM、MN、ON的斜率依次成等比数列,求△OMN面积的取值范围.
【答案】分析:(1)由题意可得2a=2×2b,,再由c2=a2-b2可解得a,b;
(2)设直线l的方程为:y=kx+m(k≠0,m≠0),代入椭圆方程消掉y得x的二次方程,设M(x1,y1)、N(x2,y2),由直线OM、MN、ON的斜率依次成等比数列,得,变形后代入韦达定理可求出k值,由△>0 得m的范围,利用三角形面积公式表示出面积,根据m的范围可得答案;
解答:解析:(1)由已知得解得
所以椭圆C的方程:
(2)由题意可设直线l的方程为:y=kx+m(k≠0,m≠0),
联立 消去y并整理,得:(1+4k2)x2+8kmx+4(m2-1)=0,
则△=64k2m2-16(1+4k2)(m2-1)=16(4k2-m2+1)>0,
此时设M(x1,y1)、N(x2,y2),则
于是y1y2=(kx1+m)(kx2+m)=
又直线OM、MN、ON的斜率依次成等比数列,
=k2⇒-=0,
由m≠0得:⇒k=
又由△>0 得:0<m2<2,显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,矛盾!)
设原点O到直线l的距离为d,则
×=|m|=
故由m得取值范围可得△OMN面积的取值范围为(0,1).
点评:本题考查直线方程、椭圆方程及其位置关系,考查三角形的面积公式,考查学生分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建省龙岩市高三(上)期末质量检查一级达标数学试卷(文科)(解析版) 题型:解答题

已知椭圆C: (a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.
(ⅰ)若满足(O为坐标原点),求△AOB的面积;
(ⅱ)当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点

(I)求椭圆C的离心率:

(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2014届甘肃武威六中高二12月学段检测文科数学试题(解析版) 题型:解答题

(12分)已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.

 ①求椭圆C的方程.

 ②当⊿AMN的面积为时,求k的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第七次月考理科数学 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:选择题

已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为kk>0)的直线与椭圆C相交于A、B两点,若。则 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步练习册答案