精英家教网 > 高中数学 > 题目详情
取正方体的六个表面的中心,这六个点所构成的几何体的体积记为V1,该正方体的体积为V2,则V1:V2=
 
考点:棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:这六个点所构成的几何体是两个底面为正方形的四棱锥对接而成的图形,每个四棱锥的底面边长与棱长都相等,长度是
2
a
2
,由此能求出V1:V2
解答: 解:这六个点所构成的几何体是两个底面为正方形的四棱锥对接而成的图形,
每个四棱锥的底面边长与棱长都相等,长度是
2
a
2

∴高度就是
a
2

∴每个四棱锥体积就是
1
3
(
2
a
2
)2•(
a
2
)
=
a3
12

两个四棱锥的体积就是
a3
12
×2=
a3
6

∴这六个点所构成的几何体的体积V1=
a3
6

该正方体的体积V2=a3
∴V1:V2=
1
6

故答案为:
1
6
点评:本题考查两个几何体的体积之比的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列结论成立的是(  )
A、若ac>bc,则a>b
B、若a>b,则a2>b2
C、若a>b,c<d,则a+c>b+d
D、若a>b,c>d,则a-d>b-c

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z满足(z+i)i=i-1(i是虚数单位),则|z|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y-4)2=1,圆C2:(x+1)2+y2=1;
(1)求过点A(4,6)的圆C1的切线l的方程;
(2)已知圆C3:(x+1)2+y2=9,动圆M半径为1,圆心M在圆心C3上移动,过圆M上任作圆C2的两条切线PE,PF,切点为E,F,求
C1E
C1F
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+1
x-2
,其中x∈[3,5].
(Ⅰ)用定义证明函数f(x)在[3,5]上单调递减;
(Ⅱ)结合单调性,求函数f(x)=
x+1
x-2
在区间[3,5]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,F1,F2分别为左、右焦点,离心率为e,半长轴长为a.
(1)若焦距长2c=2,且1、e、
1
4
成等比数列,求椭圆C的方程;
(2)在(1)的条件下,直线l:ex-y+a=0与x轴、y轴分别相交于M、N 两点,p是直线l与椭圆C的一个交点,且
MP
MN
,求λ的值;
(3)若不考虑(1),在(2)中,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知原点O到直线AB的距离为
6
3
b
(Ⅰ)求椭圆的离心率;
(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知曲线C1
x=cosφ
y=sinφ
(φ为参数),经过坐标变换
x′=2x
y′=
3
y
得到曲线C2.A,B是曲线C2上两点,且OA⊥OB.
(1)求曲线C1,C2的普通方程;
(2)求点O到直线AB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,且4a-b≥0,若函数f(x)=
1
3
ax3+x2+bx无极值,则
b-2
a+1
的取值范围为(  )
A、[2
3
-4,4]
B、[2
3
-4,+∞]
C、[-2
3
-4,4]
D、[-2
3
-4,+∞]

查看答案和解析>>

同步练习册答案