精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆长轴的两个端点分别为 离心率.

1)求椭圆的标准方程;

2)作一条垂直于轴的直线,使之与椭圆在第一象限相交于点,在第四象限相交于点,若直线与直线相交于点,且直线的斜率大于,求直线的斜率的取值范围.

【答案】1;(2.

【解析】

1)利用已知条件,求得,再由,求得的值,即可求解;

2)设,其中,可得,求得直线的方程,联立方程组,求得点的坐标,得出直线斜率,结合椭圆的范围,即可求解斜率的取值范围.

1)由题意知,椭圆长轴的两个端点分别为,可得

又由,即,可得

又因为

所以椭圆的标准方程为.

2)设,其中,可得

由斜率公式,可得

所以直线的方程为;直线的方程为

联立方程组,解得,即点

所以,即

又由

,则

所以

因为,所以,则

所以,即实数直线的斜率的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】市政府为了节约用水,调查了100位居民某年的月均用水量(单位:),频数分布如下:

分组

频数

4

8

15

22

25

14

6

4

2

(1)根据所给数据将频率分布直图补充完整(不必说明理由);

(2)根据频率分布直方图估计本市居民月均用水量的中位数;

(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1x+my+1=0l2:(m-3x-2y+13-7m=0

1)若l1l2,求实数m的值;

2)若l1l2,求l1l2之间的距离d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线x轴,y轴的交点分别为AB,圆C以线段AB为直径.

1)求圆C的标准方程;

2)若直线l过点且圆心Cl的距离为1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题:方程表示焦点在轴上的双曲线:命题:若存在,使得成立.

1)如果命题是真命题,求实数的取值范围;

2)如果为假命题,为真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托互联网+”,符合低碳出行的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:

频率分布表

组别

分组

频数

频率

1

8

0.16

2

3

20

0.40

4

0.08

5

2

合计

1)求的值;

2)若在满意度评分值为的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数的图象上任意两点,若的中点,且的横坐标为

1)求

2)若,求

3)已知数列的通项公式),数列的前项和为,若不等式对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过点且与直线相切,圆心的轨迹为曲线.

1)求曲线的方程;

2)若是曲线上的两个点且直线的外心,其中为坐标原点,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线经过点.

1)求抛物线的方程及其准线方程;

2)设为原点,过抛物线的焦点作斜率不为0的直线交抛物线于两点,直线分别交直线于点和点.求证:以为直径的圆经过轴上的两个定点.

查看答案和解析>>

同步练习册答案