精英家教网 > 高中数学 > 题目详情
D=
.
a1b1
a2b2
.
≠0
”是“方程组
a1x+b1y=c1
a2x+b2y=c2
有唯一解”的(  )
A、充分不必要条件
B、必要不充分条
C、充要条件
D、既不充分又不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据两直线间的位置关系,从而得到答案.
解答: 解:由D=
.
a1b1
a2b2
.
≠0

?a1 b2≠a2 b1
?直线a1x+b1y=c1和直线a2x+b2y=c2不平行,
?方程组
a1x+b1y=c1
a2x+b2y=c2
有唯一解,
故选:C.
点评:本题考查了充分必要条件,考查了直线之间的位置关系,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的有
 

(1)函数y=f(1+x)与y=f(1-x)图象关于x=0对称;
(2)把函数y=f(-3x)按向量
a
=(
1
3
,0)平移后得到新函数y=f(1-3x);
(3)若函数y=f(3x+1)图象关于x=1对称,则y=f(1+x)图象关于x=
1
3
对称;
(4)若对任意x∈R有f(1+x)=f(x-1)成立,则f(x)的图象关于x=1对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,若对任意的n∈N*,2Sn是an+1和an的等差中项,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4lnx,g(x)=-x2+3x
(I)求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若方程f(x)+2g(x)-m=0有唯一解,试求实数m的取值范围;
(Ⅲ)是否存在实数a使函数f(x)与g(x)在区间(a,a+1)上均为增函数,若存在求a的取值范围;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|(a-1)x≥a2-2a+1},若A∪B=R,则a的取值范围为(  )
A、(-∞,2)
B、(2,+∞)
C、[1,2]
D、(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前9项和S9=18,则a1+a3+a11=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x>0,y>0,q:xy>0,则命题p是命题q的(  )条件.
A、充分不必要
B、必要不充分
C、既不充分又不必要
D、充要

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
3
sinωx-cosωx)cosωx+
1
2
(ω>0)的周期为2π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a、b、c,且a=
3
,b+c=3,f(A)=
1
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

与-460°角终边相同的角的集合(  )
A、{∂|∂=k•360°+460°(k∈Z)}
B、{∂|∂=k•360°+100°(k∈Z)}
C、{∂|∂=k•360°+260°(k∈Z)}
D、{∂|∂=k•360°-260°(k∈Z)}

查看答案和解析>>

同步练习册答案