精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=4sincos x+.

(1)求函数f(x)的最小正周期和单调递增区间;

(2)若函数g(x)=f(x)-m区间在上有两个不同的零点x1,x2,求实数m的取值范围,并计算tan(x1+x2)的值.

【答案】(1)T=π,递增区间为(kZ).(2) m[,2),-.

【解析】

(1)先根据两角差正弦公式展开,再根据二倍角公式以及配角公式将函数化为基本三角函数形式,最后根据正弦函数性质求最小正周期和单调递增区间; (2)根据正弦函数图像确定有两解的m条件并根据对称性确定x1+x2值,即得tan(x1+x2)的值.

(1)f(x)=4sincos x+

=4cos x+=2sin xcos x-2cos2x+=sin 2x-cos 2x

=2sin.

函数f(x)的周期为T=π.

2kπ-≤2x-≤2kπ+,

kπ-xkπ+π(kZ).

f(x)的递增区间为(kZ).

(2)方程g(x)=f(x)-m=0同解于f(x)=m,在直角坐标系中画出函数y=f(x)=2sin上的图象,由图象可知,当且仅当m[,2),方程f(x)=m有两个不同的解x1,x2,

x1+x2=2×,tan(x1+x2)=tan =-tan =-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如下图,在三棱锥 的中点.

(1)求证:

2)设平面平面 求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的单调区间;
(2)若f(x)存在极值点x0 , 且f(x1)=f(x0),其中x1≠x0 , 求证:x1+2x0=0;
(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一段圆锥曲线,曲线与两个坐标轴的交点分别是

(1)若该曲线为椭圆(中心为原点,对称轴为坐标轴)的一部分,设直线过点且斜率是,求直线与该段曲线的公共点的坐标.

(2)若该曲线为抛物线的一部分,求原抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,为曲线所在圆锥曲线的焦点,

(1),求曲线的方程;

(2)如图,作直线平行于曲线的渐近线,交曲线于点,

求证:的中点必在曲线的另一条渐近线上;

(3)对于(1)中的曲线,若直线过点交曲线于点,面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆心为,定点,P为圆上一点,线段上一点N满足,直线上一点Q,满足.

(Ⅰ) 求点Q的轨迹C的方程;

(Ⅱ) O为坐标原点, 是以为直径的圆,直线相切,并与轨迹C交于不同的两点A,B. 当且满足时,求△OAB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击运动员射击1次,命中10环、9环、8环、7环(假设命中的环数都为整数)的概率分别为0.20,0.22,0.25,0.28. 计算该运动员在1次射击中:

(1)至少命中7环的概率;

(2)命中不足8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分ABC中,角A,B,C所对的边分别为a,b,c已知a=3,cos A,B=A+

1b的值;

2ABC的面积

查看答案和解析>>

同步练习册答案