【题目】已知函数f(x)=4sincos x+.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若函数g(x)=f(x)-m区间在上有两个不同的零点x1,x2,求实数m的取值范围,并计算tan(x1+x2)的值.
【答案】(1)T=π,递增区间为(k∈Z).(2) m∈[,2),-.
【解析】
(1)先根据两角差正弦公式展开,再根据二倍角公式以及配角公式将函数化为基本三角函数形式,最后根据正弦函数性质求最小正周期和单调递增区间; (2)根据正弦函数图像确定有两解的m条件,并根据对称性确定x1+x2值,即得tan(x1+x2)的值.
(1)f(x)=4sincos x+
=4cos x+=2sin xcos x-2cos2x+=sin 2x-cos 2x
=2sin.
∴函数f(x)的周期为T=π.
由2kπ-≤2x-≤2kπ+,
得kπ-≤x≤kπ+π(k∈Z).
∴f(x)的递增区间为(k∈Z).
(2)∵方程g(x)=f(x)-m=0同解于f(x)=m,在直角坐标系中画出函数y=f(x)=2sin上的图象,由图象可知,当且仅当m∈[,2)时,方程f(x)=m有两个不同的解x1,x2,
且x1+x2=2×,故tan(x1+x2)=tan =-tan =-.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的单调区间;
(2)若f(x)存在极值点x0 , 且f(x1)=f(x0),其中x1≠x0 , 求证:x1+2x0=0;
(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一段圆锥曲线,曲线与两个坐标轴的交点分别是.
(1)若该曲线为椭圆(中心为原点,对称轴为坐标轴)的一部分,设直线过点且斜率是,求直线与该段曲线的公共点的坐标.
(2)若该曲线为抛物线的一部分,求原抛物线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点,
(1)若,求曲线的方程;
(2)如图,作直线平行于曲线的渐近线,交曲线于点,
求证:弦的中点必在曲线的另一条渐近线上;
(3)对于(1)中的曲线,若直线过点交曲线于点,求△面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆心为,定点,P为圆上一点,线段上一点N满足,直线上一点Q,满足.
(Ⅰ) 求点Q的轨迹C的方程;
(Ⅱ) O为坐标原点, 是以为直径的圆,直线与相切,并与轨迹C交于不同的两点A,B. 当且满足时,求△OAB面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射击运动员射击1次,命中10环、9环、8环、7环(假设命中的环数都为整数)的概率分别为0.20,0.22,0.25,0.28. 计算该运动员在1次射击中:
(1)至少命中7环的概率;
(2)命中不足8环的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cos A=,B=A+.
(1)求b的值;
(2)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com