精英家教网 > 高中数学 > 题目详情
14.过点A(4,-3),且与原点距离最大的直线方程是4x-3y-25=0.(用一般式表示)

分析 过A(4,-3)且与原点O(0,0)距离最大的直线的方程为过点A且与直线OA垂直的直线

解答 解:过A(4,-3)且与原点O(0,0)距离最大的直线的方程为:
过点A且与直线OA垂直的直线,
∵kOA=-$\frac{3}{4}$,
∴所求直线方程的斜率k=$\frac{4}{3}$,
∴所求直线方程为:y+3=$\frac{4}{3}$(x-4,
整理,得4x-3y-25=0,
故满足条件的直线方程为:4x-3y-25=0,
故答案为:4x-3y-25=0

点评 本题考查直线方程的求法,是基题,解题时要认真审题,注意点到直线的距离最高值的合理理解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.小明同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.
为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系xOy,x轴在地平面上的球场中轴线上,y轴垂直于地平面,单位长度为1米.已知若不考虑球网的影响,网球发射后的轨迹在方程$y=\frac{1}{2}kx-\frac{1}{80}(1+{k^2}){x^2}(k>0)$表示的曲线上,其中k与发射方向有关.发射器的射程是指网球落地点的横坐标.
(Ⅰ)求发射器的最大射程;
(Ⅱ)请计算k在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标a最大为多少?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x2-2ax+2)ex
(1)函数f(x)在x=0处的切线方程为2x+y+b=0,求a,b的值;
(2)当a>0时,若曲线y=f(x)上存在三条斜率为k的切线,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若曲线f(x)=3x+ax3在点(1,a+3)处的切线与直线y=6x平行,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在等腰三角形ABC中,已知AB=AC=2$\sqrt{7}$,∠A=120°,E、F分别是边AB、AC上的点,且$\overrightarrow{AE}=m\overrightarrow{AB}$,$\overrightarrow{AF}=n\overrightarrow{AC}$,其中m,n∈(0,1),若EF、BC的中点分别为M、N且m+2n=1,则|$\overrightarrow{MN}$|的最小值是$\sqrt{3}$;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一对夫妇为了5年后能购买一辆汽车,准备每年到银行去存一笔钱.假设银行储蓄利率为5%,按复利计算,为了使5年后本利和有10万元,问他们每年约需存多少钱?(1.055≈1.27628,精确到1元).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点P是椭圆$\frac{{x}^{2}}{72}$+$\frac{{y}^{2}}{36}$=1上的任意一点,过点P作圆O:x2+y2=36的切线,切线与椭圆的另一交点为点Q
(1)当点P的横坐标为3$\sqrt{2}$,且过点P作圆O的切线有两条时,求两切线斜率的和;
(2)当点P在椭圆上运动时,求线段PQ长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的首项a1为常数,且${a_{n+1}}={3^n}-2{a_n}(n∈{N_+})$.
(1)若${a_1}≠\frac{3}{5}$,证明:$\left\{{{a_n}-\frac{3^n}{5}}\right\}$是等比数列;
(2)若${a_1}=\frac{3}{2}$,{an}中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.
(3)若{an}是递增数列,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\sqrt{4-{x^2}}$的图象与x轴所围成图形的面积是2π.

查看答案和解析>>

同步练习册答案