【题目】如图,已知双曲线C: =1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ= ,且 |,则双曲线C的离心率为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱ABC﹣A1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:
(1)直线A1E∥平面ADC1;
(2)直线EF⊥平面ADC1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F1(﹣1,0),F2(1,0),动点M到点F2的距离是 ,线段MF1的中垂线交线段MF2于点P. (Ⅰ)当点M变化时,求动点P的轨迹G的方程;
(Ⅱ)过点F2且不与x轴重合的直线L与曲线G相交于A,B两点,过点B作x轴的平行线与直线x=2相交于点C,则直线AC是否恒过定点,若是请求出该定点,若不是请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12. (Ⅰ)写出直线l的极坐标方程与曲线C的直角坐标方程;
(Ⅱ)已知与直线l平行的直线l'过点M(1,0),且与曲线C交于A,B两点,试求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(a+1)lnx﹣x2 , .
(1)讨论函数f(x)的单调区间;
(2)若函数f(x)与g(x)在(0,+∞)上的单调性正好相反. (Ⅰ)对于 ,不等式 恒成立,求实数t的取值范围;
(Ⅱ)令h(x)=xg(x)﹣f(x),两正实数x1、x2满足h(x1)+h(x2)+6x1x2=6,证明0<x1+x2≤1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m与n无关),若 a2i﹣1≤k2﹣2k﹣1对一切m∈N*恒成立,则实数k的取值范围为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若f(x)为奇函数,且x0是y=f(x)﹣ex的一个零点,则下列函数中,﹣x0一定是其零点的函数是( )
A.y=f(﹣x)e﹣x﹣1
B.y=f(x)ex+1
C.y=f(x)ex﹣1
D.y=f(﹣x)ex+1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知P是椭圆 上任意一点,过椭圆的右顶点A和上顶点B分别作x轴和y轴的垂线,两垂线交于点C,过P作AC,BC的平行线交BC于点M,交AC于点N,交AB于点D,E,矩形PMCN的面积是S1 , 三角形PDE的面积是S2 , 则 =( )
A.2
B.1
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com