精英家教网 > 高中数学 > 题目详情
(2012•北京模拟)用样本的频率分布来估计总体情况时,下列选项中正确的是(  )
分析:题目给出的四个选项都是描述用样本频率分布估计总体情况的,只要理解样本频率分布估计总体情况的实质,结合教材内容,逐一核对四个选项,就能得到正确答案.
解答:解:用样本的频率分布估计总体情况时,所取得的样本的容量越大,分组时组数越多,对应的组距越小,得到的频率折线图越接近总体密度曲线,总体密度曲线反映了总体在这个范围内的取之的百分比.所以样本容量越大估计的结果越准确.
故选C.
点评:本题考查了用样本频率分布估计总体分布,考查了频率分布折线图和总体密度曲线的关系,也考差了对课本知识的记忆,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京模拟)已知a、b、c、d是公比为2的等比数列,则
2a+b
2c+d
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)函数y=
log
2
3
(3x-2)
的定义域为
2
3
,1]
2
3
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)如图,在四棱锥P-ABCD中,PA⊥平面AC,且四边形ABCD是矩形,则该四棱锥的四个侧面中是直角三角形的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)在数列{an}中,a1=
3
an+1=
1+
a
2
n
-1
an
(n∈N*)
.数列{bn}满足0<bn
π
2
,且 an=tanbn(n∈N*).
(1)求b1,b2的值;
(2)求数列{bn}的通项公式;
(3)设数列{bn}的前n项和为Sn.若对于任意的n∈N*,不等式Sn≥(-1)nλbn恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)甲、乙、丙、丁四个人进行传球练习,每次球从一个人的手中传入其余三个人中的任意一个人的手中.如果由甲开始作第1次传球,经过n次传球后,球仍在甲手中的所有不同的传球种数共有an种.
(如,第一次传球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)写出 an+1与 an的关系式(不必证明),并求 an=f(n)的解析式;
(3)求 
anan+1
的最大值.

查看答案和解析>>

同步练习册答案