【题目】已知函数 (x>0,e为自然对数的底数),f'(x)是f(x)的导函数. (Ⅰ)当a=2时,求证f(x)>1;
(Ⅱ)是否存在正整数a,使得f'(x)≥x2lnx对一切x>0恒成立?若存在,求出a的最大值;若不存在,说明理由.
【答案】解:(Ⅰ)证明:当a=2时,f(x)=ex﹣x2 , 则f'(x)=ex﹣2x, 令 ,则 ,
令f'1(x)=0,得x=ln2,故f'(x)在x=ln2时取得最小值,
∵f'(ln2)=2﹣2ln2>0,∴f(x)在(0,+∞)上为增函数,
∴f(x)>f(0)=1;
(Ⅱ)f'(x)=ex﹣ax,
由f'(x)≥x2lnx,得ex﹣ax≥x2lnx对一切x>0恒成立,
当x=1时,可得a≤e,所以若存在,则正整数a的值只能取1,2.
下面证明当a=2时,不等式恒成立,
设 ,则 ,
由(Ⅰ)ex>x2+1≥2x>x,∴ex﹣x>0(x>0),
∴当0<x<2时,g'(x)<0;当x>2时,g'(x)>0,
即g(x)在(0,2)上是减函数,在(2,+∞)上是增函数,
∴ ,
∴当a=2时,不等式恒成立,
所以a的最大值是2
【解析】(Ⅰ)求出函数的导数,根据函数的单调性zm jk;(Ⅱ)求出函数的导数,得到a≤e,问题转化为证明当a=2时,不等式恒成立,设 ,根据函数的单调性证明即可.
【考点精析】掌握利用导数研究函数的单调性和函数的最大(小)值与导数是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.
(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:
(月份) | 1 | 2 | 3 | 4 | 5 |
(万盒) | 5 | 5 | 6 | 6 | 8 |
若线性相关,线性回归方程为,则以下为真命题的是( )
A. 每增加1个单位长度,则一定增加0.7个单位长度
B. 每增加1个单位长度,则必减少0.7个单位长度
C. 当时,的预测值为8.1万盒
D. 线性回归直线经过点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左焦点左顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知,是椭圆上的两点,是椭圆上位于直线两侧的动点.若,试问直线的斜率是否为定值?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
(1) 根据频数分布表计算苹果的重量在的频率;
(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知递减等差数列{an}满足:a1=2,a2a3=40. (Ⅰ)求数列{an}的通项公式及前n项和Sn;
(Ⅱ)若递减等比数列{bn}满足:b2=a2 , b4=a4 , 求数列{bn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某学校组织的一次篮球总投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分,如果前两次得分之和超过3分即停止投篮,否则投第3次.某同学在A处的命中率q1为0.25,在B处的命中率为q2 . 该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮的训练结束后所得的总分,其分布列为
ξ | 0 | 2 | 3 | 4 | 5 |
P | 0.03 | P1 | P2 | P3 | P4 |
(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com