精英家教网 > 高中数学 > 题目详情
11.已知数列{an}是等比数列an>0若a2,a48是方程2x2一7x+6=0两根,则a1•a2•a25•a48•a49=9$\sqrt{3}$.

分析 根据韦达定理可得a2•a48=3,再由等比数列的性质,可得答案.

解答 解:∵数列{an}是等比数列an>0,a2,a48是方程2x2-7x+6=0两根,
∴a2•a48=3,
∴a1•a2•a25•a48•a49=9$\sqrt{3}$,
故答案为:9$\sqrt{3}$.

点评 本题考查的知识点是等比数列的性质,熟练掌握等比数列中,m+n=p+q,则am•an=ap•aq,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知x,y满足$\left\{\begin{array}{l}{x-y+5≤0}\\{x≤3}\\{x+y+1≥0}\end{array}\right.$,则z=$\frac{y+5}{x}$的取值范围为(  )
A.(-1,$\frac{13}{3}$]B.(-∞,-1)∪[$\frac{13}{3}$,+∞)C.[-$\frac{2}{3}$,$\frac{1}{3}$]D.(-∞,-$\frac{2}{3}$]∪[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在平面直角坐标系中,与点A(1,1)的距离为1,且与点B(-2,-3)的距离为6的直线条数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在单位圆O的某一直径上随机的取一点Q,求过点Q且与径垂直的弦长长度不超过1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直线l经过抛物线y2=4x焦点F,且与抛物线相交于A(x1,y1),B(x2,y2)两点,通过点A和抛物线顶点的直线交抛物线的准线于点D.
(I)若直线l的斜率为1,求线段AB的长;
(Ⅱ)求证:直线DB平行于抛物线的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知sinθ,cosθ是关于x的方程x2+ax-a=0(a∈R)的两根.
(1)求sin3θ+cos3θ的值;
(2)求tanθ+$\frac{1}{tanθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C:x2+y2-4x-14y+45=0,及点Q(-2,3).
(1)P(a,a+1)在圆上,求直线PQ的斜率;
(2)若M为圆C上任一点,求|MQ|的最大值和最小值;
(3)求$\frac{y-3}{x+2}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2,抛物线C2:y=-$\frac{1}{2}({x^2}-1)$的顶点为B,且经过F1,F2,椭圆C1的上顶点A满足2$\overrightarrow{OB}=\overrightarrow{OA}$.
(I)求椭圆C1的方程;
(II)设点M满足2$\overrightarrow{{F_1}M}=\overrightarrow{{F_1}O}+\overrightarrow{{F_1}B}$,点N为抛物线C2上一动点,抛物线C2在N处的切线与椭圆交于P,Q两点,求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=lg(x-x2)的定义域为(0,1).

查看答案和解析>>

同步练习册答案