精英家教网 > 高中数学 > 题目详情

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为及以上的花苗为优质花苗.

求图中的值,并求综合评分的中位数.

用样本估计总体,以频率作为概率,若在两块试验地随机抽取棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;

填写下面的列联表,并判断是否有的把握认为优质花苗与培育方法有关.

附:下面的临界值表仅供参考.

(参考公式:,其中.)

【答案】(1)82.5;(2)见解析;(3)有的把握认为优质花苗与培育方法有关系.

【解析】

1)根据频率之和为1得到,根据面积相等,求出中位数.

2)利用二项分布列出对应的概率,写出分布列,算出数学期望.

3)根据优质花苗颗数,填好表格,选取相应数据,计算得到,再进行判断.

解得

令得分中位数为,由解得

故综合评分的中位数为

与频率分布直,优质花苗的频率为,即概率为

设所抽取的花苗为优质花苗的颗数为,则,于是,

其分布列为:

所以,所抽取的花苗为优质花苗的数学期望

结合与频率分布直方图,优质花苗的频率为,则样本种,优质花苗的颗数为棵,列联表如下表所示:

可得

所以,有的把握认为优质花苗与培育方法有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数).

1)若,求函数在区间上的最大值;

2)若,关于的方程有且仅有一个根, 求实数的取值范围;

3)若对任意,不等式均成立, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,椭圆的左,右焦点分别为F1F2,点M为椭圆上的一个动点,MF1F2面积的最大值为,过椭圆外一点(m0)(ma)且倾斜角为的直线l交椭圆于CD两点.

1)求椭圆的方程;

2)若,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两直线l1axby40l2(a1)xyb0.求分别满足下列条件的ab的值.

(1)直线l1过点(3,-1),并且直线l1l2垂直;

(2)直线l1与直线l2平行,并且坐标原点到l1l2的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数是一种反映和评价空气质量的方法,指数与空气质量对应如下表所示:

如图是某城市2018年12月全月的指数变化统计图.

根据统计图判断,下列结论正确的是( )

A. 整体上看,这个月的空气质量越来越差

B. 整体上看,前半月的空气质量好于后半月的空气质量

C. 数据看,前半月的方差大于后半月的方差

D. 数据看,前半月的平均值小于后半月的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,点为棱的中点.

(1)证明:

(2)证明:面

(3)求直线与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2x33ax2+1

1)若a=﹣1,求函数fx)的单调区间;

2)若函数fx)有且只有2个不同的零点,求实数a的值;

3)若函数y|fx|[01]上的最小值是0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为a,在线段上取两个点,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图2中的最上方的线段作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:

记第个图形(图1为第1个图形)中的所有线段长的和为,现给出有关数列的四个命题:

①数列是等比数列;

②数列是递增数列;

③存在最小的正数,使得对任意的正整数 ,都有

④存在最大的正数,使得对任意的正整数,都有

其中真命题的序号是________________(请写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,对于直线和点,记,若,则称点,被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点,被直线l分隔,则称直线l为曲线C的一条分隔线.

1)求证:点被直线分隔;

2)若直线是曲线的分隔线,求实数的取值范围;

3)动点M到点的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为曲线E的分隔线.

查看答案和解析>>

同步练习册答案