精英家教网 > 高中数学 > 题目详情
15.在△ABC中,已知tanAtanB=$\frac{4}{3}$,
(1)求tanC的取值范围;
(2)若△ABC边AB上的高CD=2.求△ABC面积S的最小值.

分析 (1)利用两角和的正切函数以及基本不等式化简求解tanC的取值范围.
(2)利用已知条件表示出三角形的面积,然后求解最小值.

解答 解:(1)在△ABC中,已知tanAtanB=$\frac{4}{3}$,tanA>0,tanB>0
tanC=-tan(A+B)=-$\frac{tanA+tanB}{1-tanAtanB}$=3(tanA+tanB)≥$6\sqrt{tanAtanB}$=4$\sqrt{3}$,
当且仅当tanA=tanB=$\frac{2\sqrt{3}}{3}$时,取等号.
tanC的取值范围:[4$\sqrt{3},+∞$).
(2)△ABC边AB上的高CD=2.
可得三角锥的面积为:$\frac{1}{2}×AB×CD$=$\frac{1}{2}×(\frac{2}{tanA}+\frac{2}{tanB})×2$
=$\frac{2(tanA+tanB)}{tanAtanB}$=$\frac{3(tanA+tanB)}{2}$≥$\frac{3×2\sqrt{tanAtanB}}{2}$=2$\sqrt{3}$.当且仅当tanA=tanB=$\frac{2\sqrt{3}}{3}$时,取等号.
三角形面积的最小值为:2$\sqrt{3}$.

点评 本题考查三角形的解法与应用,考查计算能力,基本不等式的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若F1,F2是双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$的两个焦点,P是双曲线上的一点,且|PF1|•|PF2|=64,则∠F1PF2=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=ax2+2x-3,g(x)=x2+(1-a)x-a,M={x|f(x)≤0},P={x|g(x)≥0}.若M∩P=R,则实数a的取值集合为{-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=cos(2x-$\frac{3π}{2}$)的图象关于x=$\frac{3π}{4}$+$\frac{1}{2}$kπ,k∈Z对称.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.正方体ABCD-A1B1C1D1中,AC与B1D1所成角为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.请设计一个算法,输出1000以内除以7余1的所有正整数,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线M:y2=4x,圆N:(x-1)2+y2=r2(其中r为常数,r>0).过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,且满足|AC|=|BD|的直线l只有三条的必要不充分条件是(  )
A.r∈(0,1]B.r∈(1,2]C.r∈[$\sqrt{3}$,4)D.r∈[ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点A在直线x+2y-1=0,点B在直线x+2y+3=0上,线段AB的中点为P(x0,y0),且满足y0>x0+2,则$\frac{{y}_{0}}{{x}_{0}}$的取值范围是(-$\frac{1}{2}$,-$\frac{1}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知sin(π-α)=$lo{g}_{\frac{1}{8}}4$,α∈(-$\frac{π}{2}$,0),则tanα为-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案