精英家教网 > 高中数学 > 题目详情
如果直线l按向量a=(-3,1)平移后与原直线l重合,则直线l的斜率是(    )

A.-             B.-3                 C.                 D.3

A

解析:设直线l:y=kx+b,则按向量a=(-3,1)平移后得y=k(x+3)+b+1,即y=kx+3k+b+1,

∴b=3k+b+1,k=-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分
(1)二阶矩阵M对应的变换将向量
1
-1
-2
1
分别变换成向量
3
-2
-2
1
,直线l在M的变换下所得到的直线l′的方程是2x-y-1=0,求直线l的方程.
(2)过点P(-3,0)且倾斜角为30°的直线l和曲线C:
x=s+
1
s
y=s-
1
s
(s为参数)相交于A,B两点,求线段AB的长.
(3)若不等式|a-1|≥x+2y+2z,对满足x2+y2+z2=1的一切实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选择题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1).选修4-2:矩阵与变换
已知矩阵A=
1a
-1b
,A的一个特征值λ=2,其对应的特征向量是α1=
2
1

(Ⅰ)求矩阵A;
(Ⅱ)若向量β=
7
4
,计算A2β的值.

(2).选修4-4:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
12
3cos2θ+4sin2θ
,点F1,F2为其左、右焦点,直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数,t∈R).求点F1,F2到直线l的距离之和.
(3).选修4-5:不等式选讲
已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
求矩阵A=
2,1
3,0
的特征值及对应的特征向量.
(2)选修4一4:坐标系与参数方程
已知直线l的参数方程:
x=t
y=1+2t
(t为参数)和圆C的极坐标方程:ρ=2
2
sin(θ+
π
4
)

(Ⅰ)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(Ⅱ)判断直线l和圆C的位置关系.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)选修4-4:坐标系与参数方程
已知直角坐标系xOy中,直线l的参数方程为
x=t-3 
y=
3
(t为参数).以直角坐标系xOy中的原点O为 极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐标方程;
(Ⅱ) P为圆C上的点,求P到l距离的取值范围.
(3)选修4-5:不等式选讲
已知关于x的不等式:|x-1|+|x+2|≥a2+2|a|-5对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案