精英家教网 > 高中数学 > 题目详情

已知正项数列中,其前项和为,且.
(1)求数列的通项公式;
(2)设是数列的前项和,是数列的前项和,求证:.

(1);(2)证明过程详见解析.

解析试题分析:本题主要考查等差数列的通项公式、前n项和公式、放缩放、累加法等基础知识,考查学生的分析问题解决问题的能力、计算能力、转化能力.第一问,法一,利用转化已知表达式中的,证明数列为等差数列,通过,再求;法二,利用转化,证明数列为等差数列,直接得到的通项公式;第二问,要证,只需要证中每一项都小于中的每一项,利用放缩法,先得到,,只需证,通过放缩法、累加法证明不等式.
(1)法一:由
时,,且,故               1分
时,,故,得
∵正项数列
                           4分
是首项为,公差为的等差数列.
∴  ,
∴  .                       6分
法二:
时,,且,故              1分
,                 2分
时,
∴ 
整理得 
∵正项数列
∴ ,                           5分
是以为首项,为公差的等差数列,
∴  .                           6分
(2)证明:先证:        7分
.
故只需证,              9分
因为[]2

所以                  12分
所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

数列满足,.
(1)求证:为等差数列,并求出的通项公式;
(2)设,数列的前项和为,对任意都有成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=an+2an,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列是等差数列,,前四项和
(1)求数列的通项公式;
(2)记,计算

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项均为正数,记,,
 .
(1)若,且对任意,三个数组成等差数列,求数列的通项公式.
(2)证明:数列是公比为的等比数列的充分必要条件是:对任意,三个数组成公比为的等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足an+1=(n∈N*),且a1=.
(1)求证:数列是等差数列,并求an.
(2)令bn=(n∈N*),求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在无穷数列中,,对于任意,都有. 设, 记使得成立的的最大值为.
(1)设数列为1,3,5,7,,写出的值;
(2)若为等差数列,求出所有可能的数列
(3)设,求的值.(用表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1) 为等差数列的前项和,,求
(2)在等比数列中,若,求首项和公比

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为等比数列,其前n项和为,且满足成等差数列.
(1)求数列的通项公式;
(2)已知,记,求数列前n项和.

查看答案和解析>>

同步练习册答案