【题目】如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的焦距为2,且过点( , ).
(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M. ①设直线OM的斜率为k1 , 直线BP的斜率为k2 , 求证:k1k2为定值;
②设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.
【答案】
(1)解:由题意椭圆E: =1(a>b>0)的焦距为2,且过点( , ),
∴c=1,
∴解得a=2,b= ,
∴椭圆E的标准方程为
(2)解:①设P(x0,y0)(y0≠0),
则直线AP的方程为:y= (x+2)
令x=2得M(2, )
∴k1= ,
∵k2= ,
∴k1k2= ,
∵P(x0,y0)在椭圆上,∴ =1
∴k1k2=﹣ 为定值.
②直线BP的斜率为 ,直线m的斜率为km= ,
则直线m的方程为y= (x﹣2)+y0= (x﹣2)+ = (x+1),
所以直线m过定点(﹣1,0)
【解析】(1)由题意c=1, ,解出即可;(2)①设P(x0 , y0)(y0≠0),即可得出直线AP的方程,令x=2,即可得到点M的坐标,利用斜率计算公式即可得出k1 , k2 , 再利用点P在椭圆上即可证明.②利用直线的点斜式及其①的有关结论即可证明.
科目:高中数学 来源: 题型:
【题目】设 (a,b为实常数).
(1)当a=b=1时,证明:f(x)不是奇函数;
(2)设f(x)是奇函数,求a与b的值;
(3)当f(x)是奇函数时,研究是否存在这样的实数集的子集D,对任何属于D的x、c,都有f(x)<c2﹣3c+3成立?若存在试找出所有这样的D;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图的程序框图表示的算法中,输入三个实数a,b,c,要求输出的x是这三个数中最大的数,那么在空白的判断框中,应该填入( )
A.x>c
B.c>x
C.c>b
D.c>a
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数x,y满足不等式组 ,若目标函数z=kx+y仅在点(1,1)处取得最小值,则实数k的取值范围是 ( )
A.(﹣1,+∞)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(﹣∞,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sinxcos2x,则下列结论中错误的为( )
A.点(π,0)是函数y=f(x)图象的一个对称中心
B.直线x= 是函数y=f(x)图象的一条对称轴
C.π是函数y=f(x)的周期
D.函数y=f(x)的最大值为1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆C: + =1(a>b>0)的左焦点为F1(﹣1,0),离心率是e,点(1,e)在椭圆上.
(1)求椭圆C的方程;
(2)设点M(2,0),过点F1的直线交C于A,B两点,直线MA,MB与直线x=﹣2分别交于P,Q两点,求△MPQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=﹣1对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),若a=0.76f(0.76),b=log 6f(log 6),c=60.6f(60.6),则a,b,c的大小关系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com