精英家教网 > 高中数学 > 题目详情
14.点A(1,1)在圆x2+y2-2x+1-m=0的外部,则m的取值范围为(0,1).

分析 求出圆心,利用点与圆心的距离和半径之间的关系进行求解即可.

解答 解:圆的标准方程为(x-1)2+y2=m,
则圆心为C(1,0),半径r=$\sqrt{m}$,则m>0,
若点A(1,1)在圆x2+y2-2x+1-m=0的外部,
则AC>r,
即AC>1,
则$\sqrt{m}$<1,
解得0<m<1,
故答案为:(0,1)

点评 本题主要考查点与圆的位置关系的判断,求出圆的标准方程求出圆心和半径是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若函数f(x)为定义在R上的奇函数,且在(0,+∞)为减函数,若f(2)=0,则不等式(x-1)f(x-1)>0的解集为(  )
A.(-3,-1)B.(-3,1)∪(2,+∞)C.(-3,0)∪(1,3)D.(-1,1)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知两条直线 l1:x+(1+m)y=2-m,l2:mx+2y=16.l1∥l2,则m=(  )
A.1或-2B.1C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,b=2${\;}^{-\frac{4}{3}}$,c=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,则下列关系式中正确的是(  )
A.c<a<bB.b<a<cC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2x-2-x,定义域为R;函数g(x)=2x+1-22x,定义域为[-1,1].
(Ⅰ)判断函数f(x)的单调性(不必证明)并证明其奇偶性;
(Ⅱ)若方程g(x)=t有解,求实数t的取值范围;
(Ⅲ) 若不等式f(g(x))+f(3am-m2-1)≤0对一切x∈[-1,1],a∈[-2,2]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,(a+b+c)(a+b-c)=3ab,且acosB=bcosA,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知对k∈R,直线y-kx-1=0与椭圆$\frac{x^2}{2}+\frac{y^2}{m}=1$恒有公共点,则实数m的取值范围是(  )
A.(1,2]B.[1,2)C.[1,2)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x+2)的定义域为[-1,2],则f(2x)的定义域为(  )
A.[-1,2]B.[2,16]C.[0,2]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x-ln|x|的图象为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案