¹ØÓÚº¯Êýy=f£¨x£©£¬ÓÐÏÂÁÐÃüÌ⣺
¢ÙÈôa¡Ê[-2£¬2]£¬Ôòº¯Êýf£¨x£©=
x2+ax+1
µÄ¶¨ÒåÓòΪR£»
¢ÚÈôf£¨x£©=log
1
2
£¨x2-3x+2£©£¬Ôòf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ£¨-¡Þ£¬
3
2
£©£»
¢Ûº¯Êýf(x)=loga(x+
a
x
-4)(a£¾0ÇÒa¡Ù1)
µÄÖµÓòΪR£¬ÔòʵÊýa µÄÈ¡Öµ·¶Î§ÊÇ0£¼a¡Ü4ÇÒa¡Ù1£»
¢Ü¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬Èô¶ÔÈÎÒâµÄx¡ÊR¶¼ÓУºf£¨-x£©=-f£¨x£©£¬f£¨1+x£©=f£¨1-x£© Ôò4ÊÇy=f£¨x£©µÄÒ»¸öÖÜÆÚ£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
¢Ù¢Û¢Ü
¢Ù¢Û¢Ü
£®
·ÖÎö£º¢ÙÀûÓñ»¿ª·½ÊýΪ·Ç¸ºÊý£¬¿ÉµÃx2+ax+1¡Ý0£¬¸ù¾Ýµ±a¡Ê[-2£¬2]ʱ£¬¡÷=a2-4¡Ü0£¬¿ÉÖª½áÂÛÕýÈ·£»
¢ÚÈ·¶¨º¯ÊýµÄ¶¨ÒåÓò£¬ÄÚº¯ÊýµÄ¶Ô³ÆÖᣬ¼´¿ÉµÃµ½f£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
¢Ûº¯Êýf(x)=loga(x+
a
x
-4)(a£¾0ÇÒa¡Ù1)
µÄÖµÓòΪR£¬ÔòÕæÊý¿ÉÒÔÈ¡µ½Ò»ÇÐÕýʵÊý£»
¢ÜÏÈÈ·¶¨f£¨2+x£©=f£¨-x£©£¬f£¨2-x£©=f£¨x£©£¬½ø¶ø¿ÉµÃf£¨2+x£©=f£¨2-x£©£¬¼´f£¨4+x£©=f£¨x£©£¬¹Ê¿ÉµÃ½áÂÛ£®
½â´ð£º½â£º¢Ùf£¨x£©=
x2+ax+1
µÄ¶¨ÒåÓòΪ{x|x2+ax+1¡Ý0}£¬Éèt=x2+ax+1£¬µ±a¡Ê[-2£¬2]ʱ£¬¡÷=a2-4¡Ü0£¬¡àx2+ax+1¡Ý0µÄ½â¼¯ÊÇR£¬¹Êº¯Êýf£¨x£©=
x2+ax+1
µÄ¶¨ÒåÓòΪR£¬¹Ê¢ÙÕýÈ·£»
¢Úf£¨x£©=log
1
2
£¨x2-3x+2£©µÄ¶¨ÒåÓòÊÇ{x|x2-3x+2£¾0}£¬¼´{x|x£¼1£¬»òx£¾2}£¬¶Ô³ÆÖáÊÇx=
3
2
£¬
¡àf£¨x£©µÄµ¥µ÷ÔöÇø¼äÊÇ£¨-¡Þ£¬1£©£¬¹Ê¢Ú²»ÕýÈ·£»
¢Ûº¯Êýf(x)=loga(x+
a
x
-4)(a£¾0ÇÒa¡Ù1)
µÄÖµÓòΪR£¬ÔòÕæÊý¿ÉÒÔÈ¡µ½Ò»ÇÐÕýʵÊý£¬ËùÒÔ2
a
-4¡Ü0
£¬ËùÒÔʵÊýa µÄÈ¡Öµ·¶Î§ÊÇ0£¼a¡Ü4ÇÒa¡Ù1£¬¹Ê¢ÛÕýÈ·£»
¢Ü¡ß¶ÔÈÎÒâµÄx¡ÊR¶¼ÓУºf£¨1+x£©=f£¨1-x£©£¬¡àf£¨2+x£©=f£¨-x£©£¬f£¨2-x£©=f£¨x£©£¬¡ßf£¨-x£©=-f£¨x£©£¬¡àf£¨2+x£©=f£¨2-x£©
¡àf£¨4+x£©=f£¨x£©£¬¡à4ÊÇy=f£¨x£©µÄÒ»¸öÖÜÆÚ£®
×ÛÉÏÖª£¬ÕýÈ·ÃüÌâµÄÐòºÅΪ£º¢Ù¢Û¢Ü
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü
µãÆÀ£º±¾Ì⿼²éÃüÌâµÄÕæ¼ÙµÄÅжϺÍÓ¦Óã¬ÊÇÖеµÌ⣮½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⺯ÊýµÄ¶¨ÒåÓò¡¢µ¥µ÷ÐÔ¡¢ÖµÓòºÍÖÜÆÚÐԵĺÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø¶ÔÈÎÒâµÄʵÊýa£¬b£¬¼Çmax{a£¬b}=
a(a¡Ýb)
b(a£¼b)
ÈôF£¨x£©=max{f£¨x£©£¬g£¨x£©}£¨x¡ÊR£©£¬ÆäÖÐÆ溯Êýy=f£¨x£©ÔÚx=1ʱÓм«Ð¡Öµ-2£¬y=g£¨x£©ÊÇÕý±ÈÀýº¯Êý£¬º¯Êýy=f£¨x£©£¨x¡Ý0£©Ó뺯Êýy=g£¨x£©µÄͼÏóÈçͼËùʾ  ÔòÏÂÁйØÓÚº¯Êýy=F£¨x£©µÄ˵·¨ÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢y=F£¨x£©ÎªÆ溯Êý
B¡¢y=F£¨x£©Óм«´óÖµF£¨1£©ÇÒÓм«Ð¡ÖµF£¨-1£©
C¡¢y=F£¨x£©µÄ×îСֵΪ-2ÇÒ×î´óֵΪ2
D¡¢y=F£¨x£©ÔÚ£¨-3£¬0£©Éϲ»Êǵ¥µ÷º¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÈÎÒâµÄʵÊýa¡¢b£¬¼Çmax{a£¬b}=
a(a¡Ýb)
b(a£¼b)
£®ÈôF£¨x£©=max{f£¨x£©£¬g£¨x£©}£¨x¡ÊR£©£¬ÆäÖÐÆ溯Êýy=f£¨x£©ÔÚx=lʱÓм«Ð¡Öµ-2£¬y=g£¨x£©ÊÇÕý±ÈÀýº¯Êý£¬º¯Êýy=f£¨x£©£¨x¡Ý0£©Ó뺯Êýy=g£¨x£©µÄͼÏóÈçͼËùʾ£®ÔòÏÂÁйØÓÚº¯Êýy=F£¨x£©µÄ˵·¨ÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÈÎÒâµÄʵÊýa¡¢b£¬¼Çmax{a£¬b}=
a(a¡Ýb)
b(a£¼b)
£®ÈôF£¨x£©=max{f£¨x£©£¬g£¨x£©}£¨x¡ÊR£©£¬ÆäÖк¯Êýy=f£¨x£©£¨x¡ÊR£©ÊÇÆ溯Êý£¬ÇÒÔÚx=1´¦È¡µÃ¼«Ð¡Öµ-2£¬º¯Êýy=g£¨x£© £¨x¡ÊR£©ÊÇÕý±ÈÀýº¯Êý£¬ÆäͼÏóÓëx¡Ý0ʱµÄº¯Êýy=f£¨x£©µÄͼÏóÈçͼËùʾ£¬ÔòÏÂÁйØÓÚº¯Êýy=F£¨x£©µÄ˵·¨ÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÈÎÒâµÄʵÊýa¡¢b£¬¼Çmax{a£¬b}=
a(a¡Ýb)
b(a£¼b)
£®ÉèF£¨x£©=max{f£¨x£©£¬g£¨x£©}£¨x¡ÊR£©£¬ÆäÖÐg£¨x£©=
1
3
x
£¬y=f£¨x£©ÊÇÆ溯Êý£®µ±x¡Ý0ʱ£¬y=f£¨x£©µÄͼÏóÓëg£¨x£©µÄͼÏóÈçͼËùʾ£®ÔòÏÂÁйØÓÚº¯Êýy=F£¨x£©µÄ˵·¨ÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸