精英家教网 > 高中数学 > 题目详情
10.设变量x,y满足约束条件:$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则目标函数且ax+y=z的最小值为$\frac{1}{2}$时实数a的取值范围是$\left\{{-\frac{1}{4}}\right\}$.

分析 作出不等式组对应的平面区域,利用目标函数的最小值建立条件关系进行求解即可.

解答 解:作出不等式组对应的平面区域,
∵目标函数且ax+y=z的最小值为$\frac{1}{2}$,
此时目标函数为ax+y=$\frac{1}{2}$,
即y=-ax+$\frac{1}{2}$,则此时直线过定点D(0,$\frac{1}{2}$),
由ax+y=z得y=-ax+z,
则当直线截距最小时,z最小,
则等价为可行域都在直线y=-ax+$\frac{1}{2}$的上方,
由图象知当直线y=-ax+$\frac{1}{2}$经过A时,满足条件,
由$\left\{\begin{array}{l}{x+y=3}\\{2x-y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即A(2,1),
此时-2a+$\frac{1}{2}$=1,即2a=-$\frac{1}{2}$,
则a=-$\frac{1}{4}$,
故答案为:$\left\{{-\frac{1}{4}}\right\}$

点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),…在第100个括号内的最后一个数字为501.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知区域E={(x,y)|0≤x≤3,0≤y≤2},F={(x,y)|0≤x≤3,0≤y≤2,x≥y},若向区域E内随机投掷一点,则该点落入区域F内的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2+2xsinθ-1,x∈[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$].
(1)当$θ=\frac{π}{6}$时,求函数f(x)的最小值;
(2)若函数f(x)在x∈[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]上是单调增函数,且θ∈[0,2π],求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,an+1-an=3n+2n+1求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a=(1,m)$,$\overrightarrow b=(-1,2m+1)$,且$\overrightarrow a∥\overrightarrow b$,则m=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=sin(x+\frac{π}{3}),\;x∈R$
(Ⅰ)如果点$P(\frac{3}{5},\frac{4}{5})$是角α终边上一点,求f(α)的值;
(Ⅱ)设g(x)=f(x)+sinx,求g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数$\frac{i}{1+ai}$为纯虚数,那么实数a的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知正项数列{an}中,a1=2,$a_n^2-{a_n}{a_{n-1}}-2n{a_{n-1}}-4{n^2}=0$,(n≥2,n∈N)
(1)写出a2、a3的值(只须写结果);
(2)求出数列{an}的通项公式;
(3)设${b_n}=\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+\frac{1}{{{a_{n+3}}}}+…+\frac{1}{{{a_{2n}}}}$,若对任意的正整数n,当m∈[-1,1]时,不等式${t^2}-2mt+\frac{1}{6}>{b_n}$恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案