【题目】若满足,求:
(1)的最小值;
(2)的范围;
(3)的最大值.
【答案】(1);(2);(3).
【解析】试题分析:作出约束条件表示的可行域,利用目标函数的几何意义:(1)平移直线可对直线的截距求解最值即可;(2)转化为可行域内的点与原点距离的平方,根据可行域内的点到原点的距离范围求解;(3)转化为可行域内的点与原点直线的斜率与 的和求解即可.
试题解析:
作出满足已知条件的可行域为内(及边界)区域,其中, , .
(1)目标函数,表示直线, 表示该直线纵截距,当过点时纵截距有最小值,故.
(2)目标函数表示区域内的点到坐标系点的距离的平方,又原点到的距离且垂足是在线段上,故,即
(3)目标函数,记.
则表示区域中的点与坐标原点连线的斜率,当直线过点时,斜率最大,即,即.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问7分,(2)小问5分)
设函数
(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;
(2)若在上为减函数,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为检测空气质量,某市环保局随机抽取了甲、乙两地2016年20天的PM2.5日平均浓度(单位:微克/立方米)是监测数据,得到甲地PM2.5日平均浓度的频率分布直方图和乙地PM2.5日平均浓度的频数分布表.
甲地20天PM2.5日平均浓度频率分布直方图
乙地20天PM2.5日平均浓度频数分布表
(1)根据乙地20天PM2.5日平均浓度的频数分布表作出相应的频率分布直方图,并通过两个频率分布直方图比较两地PM2.5日平均浓度的平均值及分散程度;(不要求计算出具体值,给出结论即可)
(2)求甲地20天PM2.5日平均浓度的中位数;
(3)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:
记事件:“甲地市民对空气质量的满意度等级为不满意”。根据所给数据,利用样本估计总体的统计思想,以事件发生的频率作为相应事件发生的概率,求事件的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知矩形的长为,宽为, 、边分别在轴、轴的正半轴上, 点与坐标原点重合.将矩形折叠,是点落在线段上.
(Ⅰ)当点落在中点时,求折痕所在的直线方程.
(Ⅱ)若折痕所在直线的斜率为,求折痕所在的直线方程与轴的交点坐标.(答案中可以出现)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.
(1)请将l表示成关于α的函数l=f(α);
(2)问当α为何值时l最小?并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,如图,抛物线的方程为,直线的方程为,直线交抛物线于, 两点,点为线段中点,直线, 分别与抛物线切于点, .
()求:线段的长.
()直线平行于抛物线的对称轴.
()作直线直线,分别交抛物线和两条已知切线, 于点, , , .
求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、为椭圆: ()的左、右焦点,点为椭圆上一点,且.
(1)求椭圆的标准方程;
(2)若圆是以为直径的圆,直线: 与圆相切,并与椭圆交于不同的两点、,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com