精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆与过其右焦点F10)的直线交于不同的两点AB,线段AB的中点为D,且直线l与直线OD的斜率之积为.

1)求C的方程;

2)设椭圆的左顶点为MkMAkMB分别表示直线MAMB的斜率,求证.

【答案】1;(2)证明见解析.

【解析】

1)设AB的坐标,代入椭圆中,两式相减可得直线ABOD的斜率之积,由题意可得ab的关系,再由右焦点的坐标及abc之间的关系求出ab的值,求出椭圆的方程;

2)由(1)可得M的坐标,将直线l的方程代入椭圆的方程,求出两根之和及两根之积,进而求出直线AMBM的斜率之和,再由直线ABOD的斜率之积可证得kAM+kBMkOD.

1)设Ax1y1),Bx2y2),Dx0y0),

将点AB坐标代入椭圆的方程,两式相减得0

所以kAB

因为DAB的中点,所以kOD

所以kABkOD

所以,又a2b21,解得:a24b23

所以椭圆C的方程为:1.

2)由(1)可得左顶点M(﹣20),由题意设直线AB的方程:xmy+1

联立直线与椭圆的方程:,整理可得:(4+3m2y2+6my90

所以y1+y2y1y2

所以kAM+kBM

m

因为kABkODkOD,所以mkOD,即kAM+kBMkOD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知长方形中,,现将长方形沿对角线折起,使,得到一个四面体,如图所示.

(1)试问:在折叠的过程中,异面直线能否垂直?若能垂直,求出相应的的值;若不垂直,请说明理由;

(2)当四面体体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆 的左焦点为,右顶点为,上顶点为

1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;

2)已知△外接圆的圆心在直线上,求椭圆的离心率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】癌症是迄今为止人类尚未攻克的疾病之一,目前,癌症只能尽量预防.某医学中心推出了一种抗癌症的制剂,现对20位癌症病人,进行医学试验测试药效,测试结果分为病人死亡病人存活,现对测试结果和药物剂量(单位:)进行统计,规定病人在服用(包括)以上为足量,否则为不足量,统计结果显示,这20病人

病人存活的有13位,对病人服用的药物剂量统计如下表:

编号

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

吸收量/

6

8

3

8

9

5

6

6

2

7

7

5

10

6

7

8

8

4

6

9

已知病人存活,但服用的药物剂量不足的病人共1位.

1)完成下列列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为病人存活与服用药物的剂量足量有关?

服用药物足量

服用药物不足量

合计

病人存活

1

病人死亡

合计

20

2)若在该样本服用药物剂量不足的病人中随机抽取3位,求这三人中恰有1病人存活的概率.

参考数据:

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年冬奥会申办成功,让中国冰雪项目迎来了新的发展机会,十四冬作为北京冬奥会前重要的练兵场,对冰雪运动产生了不可忽视的带动作用.某校对冰雪体育社团中甲、乙两人的滑轮、雪合战、雪地足球、冰尜(ga)、爬犁速降及俯卧式爬犁6个冬季体育运动项目进行了指标测试(指标值满分为5分,分高者为优),根据测试情况绘制了如图所示的指标雷达图.则下面叙述正确的是(

A.甲的轮滑指标高于他的雪地足球指标

B.乙的雪地足球指标低于甲的冰尜指标

C.甲的爬犁速降指标高于乙的爬犁速降指标

D.乙的俯卧式爬犁指标低于甲的雪合战指标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的极值;

2)对任意,都有,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)的焦点为坐标原点,是抛物线上异于的两点.

1)求抛物线的方程;

2)若直线的斜率之积为,求证:直线轴上一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的图象在处的切线方程;

2)当时,求证:上有唯一零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当的单调区间和极值

(2)若直线是曲线的切线的值.

查看答案和解析>>

同步练习册答案