精英家教网 > 高中数学 > 题目详情
在过正方体AC1的8个顶点中的3个顶点的平面中,能与三条棱CD 、A1D1、 BB1所成的角均相等的平面共有(  )
A.1 个       B.4 个        C.8 个         D.12个
C

试题分析:根据平行,三条棱CD 、A1D1、 BB1可平移到正方体的顶点,如BC 、BA、 BB1,此时三条棱CD 、A1D1、 BB1与平面AB1C所成的角均相等,正方体有8个顶点,所以有8个平面满足条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(13分)(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.

(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求直线AM与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱柱的侧棱与底面垂直,且,点分别为的中点.
(1)求证:平面
(2)求证:
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是边长为2的正方形,平面,且.
(1)求证:平面;
(2)求证:平面平面;
(3)求多面体的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧棱底面,的中点,,.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为平行四边形,底面

(1)证明:
(2)若,求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m,n是两条不同的直线,α,β是两个不同的平面,给出下列命题:
①若α∥β,m?β,n?α,则m∥n;
②若α∥β,m⊥β,n∥α,则m⊥n;
③若α⊥β,m⊥α,n∥β,则m∥n;
④若α⊥β,m⊥α,n⊥β,则m⊥n.
上面命题中,所有真命题的序号为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,ABCD-A1B1C1D1是长方体,AA1=a,∠BAB1=∠B1A1C1=30°,则AB与A1C1所成的角为________,AA1与B1C所成的角为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在长方体各棱所在直线中,与棱所在直线互为异面直线的有     条.

查看答案和解析>>

同步练习册答案