精英家教网 > 高中数学 > 题目详情

(本小题满分13分)

给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 若椭圆C的一个焦点为,其短轴上的一个端点到距离为

(Ⅰ)求椭圆及其“伴随圆”的方程;

(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;

(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.

解:(Ⅰ)由题意得:,半焦距       

椭圆C方程为                       

“伴随圆”方程为                              ……………3分

(Ⅱ)则设过点且与椭圆有一个交点的直线为:,         

整理得

所以,解①    ……………5分

又因为直线截椭圆的“伴随圆”所得的弦长为

则有化简得   ②      ……………7分

联立①②解得,

所以,则                   ……………8分

(Ⅲ)当都有斜率时,设点其中

设经过点与椭圆只有一个公共点的直线为

,消去得到  ……………9分

, 

经过化简得到:,               ……………11分

因为,所以有

的斜率分别为,因为与椭圆都只有一个公共点,

所以满足方程

因而,即直线的斜率之积是为定值           ……………13分

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案