精英家教网 > 高中数学 > 题目详情
已知两不共线的向量的夹角为θ,且为正实数.
(1)若垂直,求tanθ;
(2)若对任意正实数x,向量的模不小于,求θ的取值范围;
(3)若θ为锐角,对于正实数m,关于x的方程有两个不同的正实数解,且x≠m,求m的取值范围.
【答案】分析:(1)利用?,即可解出;
(2)利用向量模的计算公式及变形利用基本不等式的性质及三角函数的单调性即可得出;
(3)利用向量模的计算公式、一元二次方程有两个不等正实数根的充要条件、根与系数的关系即可解出.
解答:解:(1)∵,∴,化为
∴32-2×3×1×cosθ-8×12=0,解得
又θ∈(0,π),∴=,∴
(2)∵=,对x>0恒成立,
,对于x>0恒成立?恒成立,对于x>0.
=,当且仅当x=时取等号,∴
∵θ∈(0,π),∴
(3)对于方程两边平方得9x2-6xcosθ+1-9m2=0 (*)
设方程(*)的两个不同正实数解为x1,x2
得cosθ>0,

若x=m,则方程(*)化为,∵x≠m,∴
,得解得,且
时,m的取值范围是{m|};
时,m的取值范围是{m|}.
点评:熟练掌握向量垂直与数量积的关系、向量模的计算公式及变形利用基本不等式的性质、三角函数的单调性、一元二次方程有两个不等正实数根的充要条件、根与系数的关系是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两不共线向量a=(cosα,sinα),b=(cosβ,sinβ),则下列说法不正确的是(  )
A、(a+b)⊥(a-b)B、a与b的夹角等于α-βC、|a+b|+|a-b|>2D、a与b在a+b方向上的投影相等

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两不共线的向量
a
b
的夹角为θ,且|
a
|=3,|
b
|=1,x
为正实数.
(1)若
a
+2
b
a
-4
b
垂直,求tanθ;
(2)若对任意正实数x,向量x
a
-
b
的模不小于
1
2
,求θ的取值范围;
(3)若θ为锐角,对于正实数m,关于x的方程|x
a
-
b
|=|m
a
|
有两个不同的正实数解,且x≠m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是两不共线的向量,已知
AB
=2
e1
+k
e2
CB
=
e1
+3
e2
CD
=2
e1
-
e2

①若A,B,C三点共线,求k的值;
②若A,B,D三点共线,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两不共线的向量
a
b
的夹角为θ,且|
a
|=3,|
b
|=1,x
为正实数.
(1)若
a
+2
b
a
-4
b
垂直,求tanθ;
(2)若对任意正实数x,向量x
a
-
b
的模不小于
1
2
,求θ的取值范围;
(3)若θ为锐角,对于正实数m,关于x的方程|x
a
-
b
|=|m
a
|
有两个不同的正实数解,且x≠m,求m的取值范围.

查看答案和解析>>

同步练习册答案