精英家教网 > 高中数学 > 题目详情
7.已知幂函数f(x)=xk的图象经过函数g(x)=ax-2-$\frac{1}{2}$(a>0且a≠1)的图象所过的定点,则f($\frac{1}{4}$)的值等于(  )
A.8B.4C.2D.1

分析 利用指数函数过定点(1,0),求出g(x)的图象过定点(2,$\frac{1}{2}$),
代入幂函数f(x)=xk的解析式求出k的值,从而求出f(x)以及f($\frac{1}{4}$)的值.

解答 解:在函数g(x)=ax-2-$\frac{1}{2}$(a>0且a≠1)中,
令x-2=0,解得x=2,
此时g(x)=a0-$\frac{1}{2}$=$\frac{1}{2}$;
所以g(x)的图象过定点(2,$\frac{1}{2}$),
即幂函数f(x)=xk的图象过定点(2,$\frac{1}{2}$),
所以$\frac{1}{2}$=2k
解得k=-1;
所以f(x)=x-1
则f($\frac{1}{4}$)=4.
故选:B.

点评 本题考查了含有参数的指数函数过定点问题,也考查了幂函数的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X≥95)=0.1,现从该市高三学生中随机抽取3位同学.
(1)求抽取的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100)各有一位同学的概率;
(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A测得M点的仰角∠MAN=60°,C点的仰角∠CAB=30°,以及∠MAC=105°,从C测得∠MCA=45°,已知山高BC=150米,则所求山高MN为150$\sqrt{6}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“双曲线方程为x2-y2=3”是“双曲线离心率e=$\sqrt{2}$”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个圆锥的侧面展开图是一个半径为2的半圆,则该圆锥的体积为(  )
A.2$\sqrt{3}$πB.$\sqrt{3}$πC.$\frac{2\sqrt{3}π}{3}$D.$\frac{\sqrt{3}π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.圆O1:(x-2)2+(y+3)2=4与圆O2:(x+1)2+(y-1)2=9的公切线有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在直三棱柱ABC-A1B1C1中,P,Q分别是AA1,B1C1上的点,且AP=3A1P,B1C1=4B1Q.
(1)求证:PQ∥平面ABC1
(2)若AB=AA1,BC=3,AC1=3,BC1=$\sqrt{13}$,求证:平面ABC1⊥平面AA1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.方程x2+$\sqrt{2}$x-1=0的解可视为函数y=x+$\sqrt{2}$与函数y=$\frac{1}{x}$的图象交点的横坐标,若x4+ax-4=0的各实根x1、x2、…、xk(k≤4)所对应的点(xi,$\frac{4}{{x}_{i}}$)(i=1,2,…,k)均在直线y=x的同一侧,则实数a的取值范围是(  )
A.(-∞,-6)B.(-∞,-6)∪(6,+∞)C.(6,+∞)D.(-6,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(2,5),$\overrightarrow{b}$=(x,-2),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=$-\frac{4}{5}$.

查看答案和解析>>

同步练习册答案