精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于(参考公式:)( )

A. B. C. D.

【答案】D

【解析】

根据题意画出图形,设底面正方形的中心为,四棱锥的外接球的球心为,半径为,设底面正方形的边长为,四凌锥的高为,根据题意列出关于的方程,进一步由勾股定理,即可求解.

如图所示,设底面正方形的中心为,四棱锥的外接球的球心为,半径为.

设底面正方形的边长为,四凌锥的高为,则

因为该四棱锥的侧棱长为,所以,即……①

又因为四棱锥的体积为4,所以 ……②

由①得,代入②得,配凑得

,即

,因为,所以.

再将回代入①中,解得,所以,所以.在中,由勾股定理,得,即

解得,所以此球的半径等于.

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(为自然对数的底数).

(Ⅰ)若函数的图象在处的切线为,当实数变化时,求证:直线经过定点;

(Ⅱ)若函数有两个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“ 两项作品未获得一等奖”;

丁说:“作品获得一等奖”.

若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在坐标轴上,且经过.

(Ⅰ)求椭圆的标准方程和离心率;

(Ⅱ)四边形的四个顶点都在椭圆上,且对角线过原点,若,求证:四边形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为

)求椭圆的方程.

)直线与椭圆交于两点,点是椭圆的右顶点.直线与直线分别与轴交于点两点,试问在轴上是否存在一个定点使得?若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”他们的调查结果如下:

(1)完成如下列联表,并判断是否有的把握认为,了解阿基米德与选择文理科有关?

(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.

(ⅰ)求抽取的文科生和理科生的人数;

(ⅱ)从10人的样本中随机抽取两人,求两人都是文科生的概率.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量,2,…,10)数据作了初步处理,得到如图散点图及一些统计量的值.

表中

(1)根据散点图判断,哪一个适宜作为声音强度关于声音能量的回归方程类型?(给出判断即可,不必说明理由)

(2)根据表中数据,求声音强度关于声音能量的回归方程;

(3)当声音强度大于60分贝时属于噪音,会产生噪音污染,城市中某点共受到两个声源的影响,这两个声源的声音能量分别是,且.已知点的声音能量等于声音能量之和.请根据(1)中的回归方程,判断点是否受到噪音污染的干扰,并说明理由.

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

同步练习册答案