精英家教网 > 高中数学 > 题目详情
(2013•浙江模拟)一个口袋中装有2个白球和n个红球(n≥2且n∈n*),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(Ⅰ) 摸球一次,若中奖概率为
13
,求n的值;
(Ⅱ) 若n=3,摸球三次,记中奖的次数为ξ,试写出ξ的分布列并求其期望.
分析:(I)求出一次摸球从n+2个球中任选两个方法,两球颜色相同有Cn2+C22种选法,即可求出摸球中奖的概率P,再由p=
1
3
即可求n的值;
(II)由题意知若n=3,求得每次摸球中奖的概率
2
5
,根据ξ~B(3,
2
5
),Eξ=n×p,即可求出ξ的期望.
解答:解:(I)一次摸球从n+2个球中任选两个,有Cn+22种选法,其中两球颜色相同有Cn2+C22种选法;
一次摸球中奖的概率P=
C
2
n
C
3
2
C
2
n+2
=
n2-n+2
n2+3n+2

n2-n+2
n2+3n+2
=
1
3
得n=2;
(II)由题意知若n=3,则每次摸球中奖的概率为p=
C
2
2
+
C
2
3
C
2
5
=
2
5
,且ξ~B(3,
2
5

所以ξ的期望为Eξ=n×p=
6
5
点评:本题考查组合及组合数公式,等可能事件的概率,离散型随机变量期望.求离散型随机变量期望的步骤:①确定离散型随机变量 的取值.②写出分布列,并检查分布列的正确与否,即看一下所有概率的和是否为1.③求出期望.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江模拟)函数f(x)=Asin(ωx+φ)(A>0,ω>),|φ|<
π
2
)的部分图象如图示,则将y=f(x)的图象向右平移
π
6
个单位后,得到的图象解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知C=
π3

(Ⅰ)若a=2,b=3,求△ABC的外接圆的面积;
(Ⅱ)若c=2,sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)一个口袋中装有2个白球和3个红球,每次从袋中摸出两个球,若摸出的两个球颜色相同为中奖,否则为不中奖,则中奖的概率为
2
5
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若|
AB
|=a,|
AD
|=b,则
AC
BD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知sin(
π
4
-x)=
3
4
,且x∈(-
π
2
,-
π
4
)
,则cos2x的值为
-
3
7
8
-
3
7
8

查看答案和解析>>

同步练习册答案