精英家教网 > 高中数学 > 题目详情
“m=2”是“直线(m-1)x+y=1和直线mx-2y=1相互垂直”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据直线垂直的等价条件,结合充分条件和必要条件的定义进行判断即可.
解答: 解:若直线(m-1)x+y=1和直线mx-2y=1垂直,则m(m-1)-2=0,
即m2-m-2=0,解得m=-1或m=2,
故“m=2”是“直线(m-1)x+y=1和直线mx-2y=1相互垂直”的充分不必要条件,
故选:A.
点评:本题主要考查充分条件和必要条件的判断,根据直线垂直的等价条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)n0.350
第3组[170,175)30p
第4组[175,180)200.200
第5组[180,185]100.100
合计1001.000
(Ⅰ)求频率分布表中n,p的值,并补充完整相应的频率分布直方图;
(Ⅱ)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(Ⅱ)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在N*上的函数,且f(1)=2,f(x+1)=
f(x)+1
2
,求f(x)的解析式、利用给定的特性求解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角△ABC的内切圆半径为1,则△ABC面积的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|tanx|的最小正周期为(  )
A、
π
2
B、π
C、2π
D、无最小正周期

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-2|x|-3的单调增区间是(  )
A、(-∞,-1]和[0,1]
B、[1,+∞)
C、[-1,0]和[1,+∞)
D、(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内有两组平行线,一组6条,另一组4条,这两组平行线相交,可以构成的平行四边形个数是
 
(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

画出下列函数的图象:
(1)y=|x-2|;
(2)y=|x-1|+|2x+4|.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2≥0”的否定是(  )
A、?x∈R,x2<0
B、?x∈R,x2≤0
C、?x0∈R,x02<0
D、?x0∈R,x02≥0

查看答案和解析>>

同步练习册答案