精英家教网 > 高中数学 > 题目详情

【题目】已知fx)是定义在[-1,1]上的奇函数,且f(1)=1,若任意的ab∈[-1,1],当a+b≠0时,总有

(1)判断函数fx)在[-1,1]上的单调性,并证明你的结论;

(2)解不等式:

(3)若fx)≤m2-2pm+1对所有的x∈[-1,1]恒成立,其中p∈[-1,1](p是常数),试用常数p表示实数m的取值范围.

【答案】1上是增函数,证明如下:

任取,且,则,于是有,而,故,故上是增函数

2

3)由(1)知最大值为,所以要使对所有的恒成立,只需成立,即成立.

时,的取值范围为

时,的取值范围为

时,的取值范围为R

【解析】

1上是增函数,证明如下:

任取,且,则,于是有,而,故,故上是增函数

2)由上是增函数知:

故不等式的解集为

3)由(1)知最大值为,所以要使对所有的恒成立,只需成立,即成立.

时,的取值范围为

时,的取值范围为

时,的取值范围为R

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学进行自主招生时,需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:

得出下面四个结论:

①甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前

②乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前

③甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前

④乙同学的总成绩排名比丙同学的总成绩排名更靠前

则所有正确结论的序号是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,AB∥CD,∠DAB=90°,点E、F分别在CD、AB上,且EF⊥CD,BE⊥BC,BC=1,CE=2.现将矩形ADEF沿EF折起,使平面ADEF与平面EFBC垂直(如图2).

(1)求证:CD∥面ABF;
(2)当AF的长为何值时,二面角A﹣BC﹣F的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x+a|,其中a为实常数.
(1)若函数f(x)的最小值为2,求a的值;
(2)当x∈[0,1]时,不等式|x﹣2|≥f(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,令 .

1)写出 的值,并猜想数列的通项公式;

2)用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆MA(-4,0),B(1,5),C(6,0)三点.

(Ⅰ)求圆M的方程

(Ⅱ)若直线ax-y+5=0(a>0)与圆M相交于PQ两点,是否存在实数a,使得弦PQ的垂直平分线l过点E(-2,4),若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】端午节吃粽子是我国的传统习俗,设一盘中装有个粽子,其中豆沙粽个,肉粽个,白粽个,这三种粽子的外观完全相同,从中任意选取

)求三种粽子各取到个的概率.

)设表示取到的豆沙粽个数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中, 平面 ,且 的中点.

1)求异面直线所成角的大小;

2)求点D到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x﹣sin2xsinφ﹣2cos2xsin2 (0<φ< )的图象的一个对称中心为( ,0),则下列说法不正确的是(
A.直线x= π是函数f(x)的图象的一条对称轴
B.函数f(x)在[0, ]上单调递减
C.函数f(x)的图象向右平移 个单位可得到y=cos2x的图象
D.函数f(x)在x∈[0, ]上的最小值为﹣1

查看答案和解析>>

同步练习册答案