【题目】已知函数(,且).
(1)求函数的单调区间;
(2)若存在,使得(是自然对数的底数),求实数的取值范围.
【答案】(1)函数的单调增区间为,单调减区间为;(2).
【解析】
试题分析:(1)先对求导,对分情况讨论,都得到在上是增函数, ,∴的解集为,的解集为,得出函数的单调区间;(2)由已知条件得出,转化成求函数的最值,分类讨论得出结果.
试题解析:解:(1)
∵当时,,在上是增函数,
当时,,在上也是增函数,
∴当或时,总有在上是增函数,
又,∴的解集为,的解集为,
故函数的单调增区间为,单调减区间为.
(2)∵存在,使得成立,
而当时,,
∴只要即可.
又∵,,的变化情况如下表所示:
0 | |||
0 | |||
减函数 | 极小值 | 增函数 |
∴函数在上是减函数,在上是增函数,
∴当时,的最小值,
的最大值为和中的最大者.
∵,
令,
∵,∴在上是增函数.
而,故当时,,即;
当时,,即.
∴当时, ,即,
函数在上是增函数,解得;
当时,,即,
函数在上是减函数,解得.
综上所述,所求的取值范围为.
科目:高中数学 来源: 题型:
【题目】为方便市民休闲观光,市政府计划在半径为200米,圆心角为的扇形广场内(如图所示),沿边界修建观光道路,其中分别在线段上,且两点间距离为定长米.
(1)当时,求观光道段的长度;
(2)为提高观光效果,应尽量增加观光道路总长度,试确定图中两点的位置,使观光道路总长度达到最长?并求出总长度的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)计算甲、乙两人射箭命中环数的平均数和标准差;
(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,四边形为正方形,点分别为线段上的点,.
(1)求证:平面平面;
(2)求证:当点不与点重合时,平面;
(3)当,时,求点到直线距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆:的左、右焦点分别为,右顶点为,上顶点为, 若成等比数列,椭圆上的点到焦点的最短距离为.
(1)求椭圆的标准方程;
(2)设为直线上任意一点,过的直线交椭圆于点,且,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一青蛙从点开始依次水平向右和竖直向上跳动,其落点坐标依次是,(如图所示,坐标以已知条件为准),表示青蛙从点到点所经过的路程.
(1)若点为抛物线()准线上一点,点均在该抛物线上,并且直线经过该抛物线的焦点,证明.
(2)若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,试写出(不需证明);
(3)若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,求的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com