精英家教网 > 高中数学 > 题目详情
双曲线的渐近线方程为y=±
3
4
x
,则双曲线的离心率为(  )
A.
5
3
B.
5
4
C.
4
5
3
5
D.
5
3
5
4
由双曲线的渐近线方程为y=±
3
4
x

当焦点在x轴时,
b
a
=
3
4
,∴e=
c
a
=
1+
b2
a2
=
1+
32
42
=
5
4

当焦点在y轴时,
a
b
=
3
4
e=
c
a
=
1+
b2
a2
=
1+
42
32
=
5
3


∴e=
5
4
5
3

故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别F1、F2,O为双曲线的中心,P是双曲线右支上异于顶点的任一点,△PF1F2的内切圆的圆心为I,且⊙I与x轴相切于点A,过F2作直线PI的垂线,垂足为B,若e为双曲线的离心率,下面八个命题:
①△PF1F2的内切圆的圆心在直线x=b上;
②△PF1F2的内切圆的圆心在直线x=a上;
③△PF1F2的内切圆的圆心在直线OP上;
④△PF1F2的内切圆必通过点(a,0);
⑤|OB|=e|OA|;
⑥|OB|=|OA|;
⑦|OA|=e|OB|;
⑧|OA|与|OB|关系不确定.
其中正确的命题的代号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线
x2
a2
-
y2
9
=1
(a>0)的渐近线方程为3x±2y=0,则此双曲线的离心率为(  )
A.
13
2
B.
5
2
C.
3
2
D.
5
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(0,4)的直线与双曲线
x2
4
-
y2
12
=1
的右支交于A,B两点,则直线AB的斜率k的取值范围是(  )
A.(
3
7
)
B.(-
7
,-
3
)
C.(
3
,+∞)∪(-∞,-
3
)
D.(-
7
,-
3
)∪(
3
7
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线
x2
9
-
y2
m
=1
的渐近线方程为y=±
5
3
x
,则双曲线焦点F到渐近线的距离为 ______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线
x2
4
-
y2
a
=1
的实轴为A1A2,虚轴为B1B2,将坐标系的右半平面沿y轴折起,使双曲线的右焦点F2折至点F,若点F在平面A1B1B2内的射影恰好是该双曲线的左顶点A1,且直线B1F与平面A1B1B2所成角的正切值为
5
5
,则a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若方程
x2
m
+
y2
m+3
=1
表示焦点在y轴上的双曲线,则m的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线C:
x2
a2
-
y2
b2
=1
满足条件:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为
5
3
,求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,符合添加的条件可以是(  )
①双曲线C:
x2
a2
-
y2
b2
=1
上的任意点P都满足||PF1|-|PF2||=6;
②双曲线C:
x2
a2
-
y2
b2
=1
的渐近线方程为4x±3y=0;
③双曲线C:
x2
a2
-
y2
b2
=1
的焦距为10;
④双曲线C:
x2
a2
-
y2
b2
=1
的焦点到渐近线的距离为4.
A.①③B.②③C.①④D.①②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆x2+y2=R2与双曲线
x2
4
-
y2
9
=1
无公共点,则R取值范围为______.

查看答案和解析>>

同步练习册答案