精英家教网 > 高中数学 > 题目详情

【题目】若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.

(1)求a和b的值;

(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.

【答案】(1)a=0,b=-3.

(2)-2.

【解析】(1)由题设得f′(x)=3x2+2ax+b,

所以

解之得a=0,b=-3.

(2)由(1)知f(x)=x3-3x.

因为f(x)+2=(x-1)2(x+2),

所以g′(x)=0的根为x1=x2=1,x3=-2,

于是函数g(x)的极值点只可能是1或-2.

当x<-2时,g′(x)<0;当-2<x<1时,

g′(x)>0,故-2是g(x)的极值点.

当-2<x<1或x>1时,g′(x)>0,

故1不是g(x)的极值点.

所以g(x)的极值点为-2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若无穷数列{an}满足:只要ap=aq(p,q∈N*),必有ap+1=aq+1 , 则称{an}具有性质P.
(1)若{an}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3
(2)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c5=1;b5=c1=81,an=bn+cn , 判断{an}是否具有性质P,并说明理由;
(3)设{bn}是无穷数列,已知an+1=bn+sinan(n∈N*),求证:“对任意a1 , {an}都具有性质P”的充要条件为“{bn}是常数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过直线x﹣y﹣1=0与直线2x+y﹣5=0的交点P.

(1)若l与直线x+3y﹣1=0垂直,求l的方程;

(2)点A(﹣1,3)和点B(3,1)到直线l的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四面体VABC木块中,P为△VAC的重心,这点P作截面EFGH,若截面EFGH是平行四边形,则该截面把木块分成两部分体积之比为____________. (填体积小与体积大之比

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAD;

(2)在PB上确定一个点Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,2012年春节,摄影爱好者在某公园处,发现正前方处有一立柱,测得立柱顶端的仰角和立柱底部的俯角均为,设的眼睛距地面的距离米.

(1)求摄影者到立柱的水平距离和立柱的高度;

(2)立柱的顶端有一长2米的彩杆绕其中点与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆为坐标原点,动点在圆外,过点作圆的切线,设切点为.

(1)若点运动到处,求此时切线的方程;

(2)求满足的点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果数列a1 , a2 , a3 , … , an , …是等差数列,那么下列数列中不是等差数列的是:(
A.a1+x , a2+x , a3+x , …,an+x ,
B.ka1 , ka2 , ka3 , …,kan
C.
D.a1 , a4 , a7 , …a3n2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|3+2xx2>0},N={x|x>a},若MN,则实数a的取值范围是(
A.[3,+∞)
B.(3,+∞)
C.(﹣∞,﹣1]
D.(﹣∞,﹣1)

查看答案和解析>>

同步练习册答案